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Abstract. In the western United States, forest ecosystems are subject to a variety of forcing
mechanisms that drive dynamics, including climate change, land-use/land-cover change,
atmospheric pollution, and disturbance. To understand the impacts of these stressors, it is
crucial to develop assessments of forest properties to establish baselines, determine the extent
of changes, and provide information to ecosystem modeling activities. Here we report on
spatial patterns of characteristics of forest ecosystems in the western United States, including
area, stand age, forest type, and carbon stocks, and comparisons of these patterns with those
from satellite imagery and simulation models. The USDA Forest Service collected ground-
based measurements of tree and plot information in recent decades as part of nationwide forest
inventories. Using these measurements together with a methodology for estimating carbon
stocks for each tree measured, we mapped county-level patterns across the western United
States. Because forest ecosystem properties are often significantly different between hardwood
and softwood species, we describe patterns of each. The stand age distribution peaked at 60–
100 years across the region, with hardwoods typically younger than softwoods. Forest carbon
density was highest along the coast region of northern California, Oregon, and Washington
and lowest in the arid regions of the Southwest and along the edge of the Great Plains. These
results quantify the spatial variability of forest characteristics important for understanding
large-scale ecosystem processes and their controlling mechanisms. To illustrate other uses of
the inventory-derived forest characteristics, we compared them against examples of
independently derived estimates. Forest cover compared well with satellite-derived values
when only productive stands were included in the inventory estimates. Forest types derived
from satellite observations were similar to our inventory results, though the inventory database
suggested more heterogeneity. Carbon stocks from the Century model were in good agreement
with inventory results except in the Pacific Northwest and part of the Sierra Nevada, where it
appears that harvesting and fire in the 20th century (processes not included in the model runs)
reduced measured stand ages and carbon stocks compared to simulations.

Key words: Century model; FIA; forest carbon stocks; forest cover; forest inventories; forest type;
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INTRODUCTION

Forests are locally and globally important ecosystems,

providing habitat, timber resources, carbon (C) storage,

and recreational opportunities. In the western United

States, forests are currently subjected to changing

environmental conditions, and future projections con-

tinue or enhance these drivers of change. Recent climate

variability in the West, in the form of increasing

temperatures, enhanced precipitation, or drought, has

resulted in forest responses such as massive dieback in

the Southwest (Breshears et al. 2005) and changes in C

fluxes (Hicke et al. 2002, Nemani et al. 2002).

Atmospheric pollution affects western forests, causing,

for example, reductions in growth due to ozone damage

(e.g., Arbaugh et al. 1998) or modifications to biogeo-

chemical cycling following nitrogen deposition (Rueth et

al. 2003). Changes in forest cover resulting from human

influence have significant impacts on forest biodiversity

and function (Parmenter et al. 2003). Natural distur-

bances such as fire (Westerling et al. 2006) and insect

outbreaks (Logan et al. 2003) have increased in recent

years, and are predicted to continue increasing with

future climate change (Bachelet et al. 2003, Hicke et al.

2006). Invasive species, such as white pine blister rust

(Kinloch 2003) or sudden oak death (Barrett et al. 2006),

are putting some western forests at risk. Changing

natural disturbance and harvest regimes throughout the

last century have influenced forest age, structure, and

species composition (e.g., Covington and Moore 1994,
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Minnich et al. 1995, Westerling et al. 2006). These

changes have significant impacts within forest ecosys-

tems, for example, on biogeochemical cycling (Kashian

et al. 2006).

Forests play a significant role in the global carbon

cycle. In the Northern Hemisphere, forests and wood-

lands were a carbon sink of 0.6–0.7 Pg C/yr in the early

1990s (Goodale et al. 2002), as compared to an increase

of atmospheric CO2 of 3.2 Pg C/yr (Intergovernmental

Panel on Climate Change 2001). Estimates of the net C

flux in the United States from various methods,

including atmospheric inverse modeling, forest invento-

ries, bookkeeping models, and carbon cycle models, are

between 0.1 and 1 Pg C/yr (Pacala et al. 2001), with

western forests significant contributors to the sink.

Denser forests and increased forest cover in this region

in response to human suppression of fire and/or grazing

are thought to be currently sequestering carbon

(Houghton et al. 2000, Pacala et al. 2001). Modeled

contemporary net C flux in the United States following

recent climate change and CO2 fertilization was largest

in the higher elevation forested ecosystems of the West

(Schimel et al. 2002). An analysis of satellite-derived

gross primary production (GPP) indicated that areas in

the western United States with significant GPP occur at

higher elevations (typically associated with forest

ecosystems; Schimel et al. 2002).

Characterizing the state of forest properties is crucial

for gauging the response of forests to these driving

processes. Multiple types of information are available

for such analysis, including plot-level studies, remotely

sensed imagery, and modeling (e.g., VEMAP Members

1995, Hicke et al. 2002, Monson et al. 2002, Schimel et

al. 2002). Here we discuss forest characteristics estimat-

ed from inventories, which have unique features that

provide significant advantages for studying forest

properties. In the United States, inventories produced

by the USDA Forest Service include field measurements

of millions of trees on more than 125 000 plots

distributed across the lower 48 states (Smith 2002).

These ground-based measurements were taken within a

spatially extensive framework, about one plot every

2500 ha. Forest ecosystem properties can be estimated

from these in situ measurements at plot to national

scales. Inventory-based studies are valuable for estab-

lishing baselines for studies of future change, calculating

carbon sequestration, and understanding spatial pat-

terns and controls on forest processes. Forest charac-

teristics from inventories are also valuable for

comparison with estimates from the other sources listed

above.

In this study, we focus on four key forest character-

istics available from USDA Forest Service inventories:

forest area, stand age, forest type, and carbon stocks.

Each of these has been identified as a key indicator for

tracking the condition of forests in the United States (H.

John Heinz III Center for Science 2002). Forest area is

used to identify land cover changes, estimate carbon

sequestration, and quantify habitat. Although U.S.

forests are not subjected to the extensive clearing in

the tropics (Nepstad et al. 1999, DeFries et al. 2002,

Asner et al. 2005), monitoring changes in forest area is

still needed and required by federal law (Smith 2002).

Stand age is a strong determinant of ecosystem structure

and biogeochemical cycling. Stand development follow-

ing disturbance governs net C fluxes through the release

of carbon to the atmosphere from dead material as well

as the regrowth of the stand (e.g., Hicke et al. 2003,

Litvak et al. 2003, Kashian et al. 2006). Finally, stand

age can provide clues about past disturbances. Forest

types (dominant species) define phenological traits, leaf

morphology, and habitat types. For example, aspen

stands are broad-leaf, deciduous trees that are typically

more productive and are associated with more biological

diversity than nearby evergreen needleleaf pine stands

(Gower et al. 1997, Simonson et al. 2001). Carbon

sequestration has been proposed in forests as a means of

partially offsetting anthropogenic emissions, and chang-

es in C stocks indicate whether forests are carbon

sources or sinks. Biomass measurements can also be

used for estimating the potential for and consequences

of wildfire (Rothermel 1972, Bessie and Johnson 1995,

Kashian et al. 2006).

Multiple methods exist for estimating biomass from

inventory measurements. Growing stock volume aggre-

gated to the county or state level has been combined

with expansion factors to estimate biomass at the same

aggregated spatial resolution (Birdsey 1992, Brown et al.

1999). A second method, which we employ here, uses

diameter measurements from individual trees together

with allometric equations that convert diameters to

biomass (Jenkins et al. 2001). The method using county-

level growing stock volume has the advantage of a

simpler, less computationally intensive approach. The

tree-level method using diameter measurements has the

advantage that additional information is available at the

plot (e.g., topography) or tree level (e.g., species),

reducing uncertainties associated with growing stock

volume methods and facilitating more detailed analysis

that can be used to address complex questions about

forest attributes, forest dynamics, and their relationship

to large-scale environmental patterns.

Forest characteristics from inventories, particularly

biomass, have typically been reported at regional or

national scales (Birdsey 1992, Turner et al. 1995, Birdsey

and Lewis 2003). Goodale et al. (2002) reported

northern hemisphere forest net carbon budgets by

nation using forest inventories. Finer resolution regional

studies have focused on county-level (Brown et al. 1999)

or 0.58 gridded results (Jenkins et al. 2001) for eastern

forests. Comparable finer resolution studies for the

western United States are lacking to date.

Our objectives were to map the spatial patterns in the

western United States of each of the above four forest

properties using the most recent, complete Resources

Planning Act (RPA) inventory database and distinguish

JEFFREY A. HICKE ET AL.2388 Ecological Applications
Vol. 17, No. 8



patterns in hardwood vs. softwood forests. Our results

are complementary to previously published studies
focused on forest biomass in the eastern United States,

and are at finer spatial resolution than past national
studies. Furthermore, we report on additional forest

characteristics beyond biomass that are important to
ecological studies. A secondary objective was to
demonstrate the utility of the inventory-derived charac-

teristics through comparisons with other sources of
information. Thus, for forest attributes that have been

estimated through other means (e.g., remotely sensed
imagery), we provide comparisons. These comparisons

are not meant to quantify differences in detail or
evaluate potential shortcomings in a particular method,

but are included as illustrative.

METHODS

Forest inventory database

In the United States, the Resources Planning Act
(RPA) of 1928 mandated that the USDA Forest Service

monitor properties and report conditions of U.S. forests
(Smith 2002). Regular reports track forest properties at

the state to national scale (Smith et al. 2004). Prior to
the late 1990s, the Forest Inventory and Analysis (FIA)

surveyed private lands, whereas the National Forest
System (NFS) was responsible for surveying national

forest lands. The large amount of public ownership of
forests in the West (compared to the East) implies that

the inclusion of NFS inventories is critical for accurate
assessments of forest properties. These ‘‘periodic’’

inventories occurred nominally every 10 years (Smith
2002). In the late 1990s, responsibility for the nationwide

forest inventory of all lands was assumed by the FIA,
and methods shifted to an ‘‘annual’’ inventory, in which

a subset of plots is measured every year.
‘‘Phase 1’’ inventory plots were established to measure

forest cover area (see Smith [2002] and Alerich et al.
[2004] for details). Remotely sensed information at each

Phase 1 plot was interpreted to produce a land-use
classification, which was further refined for forests by
type, volume, and other stand characteristics. Measure-

ments from ground plots were then used to correct the
classification and provide additional information not

available from the remote sensing. The classification was
also used to develop expansion factors that allow plot-

level information to be scaled to populations. These
population values are aggregated to produce county-

level information.
Every 2500-ha, ‘‘Phase 2’’ fixed-radius or variable-

radius ground plots were established. Multiple tree and
stand characteristics were recorded by field crews.

Diameter at breast height (dbh) was measured and
species was noted, and stand age for each forested

condition (an area within a plot with common land
ownership, forest type, stand size and density, and other

characteristics [Alerich et al. 2004]) was determined by
coring two to three dominant or codominant trees

identified in the field (USDA Forest Service 2005). If the

condition had not experienced severe disturbance since

the previous disturbance, the prior stand age may simply

have been updated to the current year and recorded. Age

was either identified to the nearest year or binned into

10-year classes for ages ,100 years, 20-year classes for

ages between 100 and 200 years, and 100-year classes for

ages .200 years. To account for variability in the

measurement years among the plots, we computed the

year of stand origin by subtracting the stand age from

the measurement year.

Analysis

We used inventory information from the RPA

database, from the Forest Inventory and Analysis

(FIA) web site and downloaded in 2005 (data available

online).6 The RPA database includes plots on private

lands measured by the FIA program as well as plots

measured by the National Forest System that were not

then the responsibility of FIA. Under the current

annualized inventory system, FIA measures all plots,

but few states have made substantial progress toward a

complete inventory of all established plots. For example,

as of 2004, Colorado had completed only three of 10

subcycles. Thus, we chose to analyze the older but more

complete RPA database. In this analysis, we included

twelve states west of the Great Plains with significant

forest area. Except where noted otherwise, we consid-

ered all forest lands, including productive (‘‘timber-

land’’) and stands not classified as timberland.

We calculated county area using the following

equation (Alerich et al. 2004):

A ¼
X

i

ðEA;i 3 ciÞ ð1Þ

where A is area of a county, EA,i is the area expansion

factor of each plot within a county (units of area), and ci
is the proportion of the plot with the desired condition

(unitless). EA,i and ci were obtained from the RPA

database. The summation occurs over all plots of

interest within a county. Typically, plots have one

condition each but may have more. For computing total

area, all land conditions were used (i.e., excluding

water). For computing forest area, primary forest

characteristics include �10% stocking currently or in

previous inventories. Stocking is determined from a

look-up table using tree species and dbh (USDA Forest

Service 2005). In western woodlands where stocking

cannot be determined, a stand is considered forested if it

has at least 5% canopy cover currently or in the past.

‘‘Timberland’’ conditions meet the forest condition

requirements and in addition have a site productivity

(in terms of wood volume) of �0.24 m3�ha�1�yr�1 (20

ft3�acre�1�yr�1; Alerich et al. 2004).

We calculated the carbon stock of each tree (Ct, units

of g C) in the RPA database from the tree species and

6 hhttp://fia.fs.fed.usi
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dbh observations, including timber and non-timber

species, together with allometric equations that convert

diameters to biomass (Fig. 1 diagrams the process flow).

We used the allometric equations of Jenkins et al. (2003)

and Jenkins et al. (2004), who compiled .1800

equations and conducted a meta-analysis using .100

published studies to determine a consistent, national-

scale database of regression equations for computing

aboveground biomass for tree species in the United

States. This set of allometric equations is broken down

into four hardwood species groups, five softwood

species groups, and one woodland species group. Using

the inventory species table provided by Jenkins et al.

(2003), we assigned each species to the appropriate

Jenkins species group to identify the proper allometric

equations to be used. We also used the component

equations developed by Jenkins et al. (2003) to estimate

coarse root biomass and therefore calculated total tree

biomass that included foliage, wood, and coarse roots.

These component equations were broken down into two

classes: hardwoods and softwoods. Both the allometric

equations for aboveground biomass and the component

equations were functions of dbh only.

We summed the carbon stocks of live trees in each

plot using

Cp ¼
X

j

½Ctð jÞ3 TPAð jÞ� ð2Þ

where Cp is the plot-level C stock (units of Mg C/ha),

Ct( j) is the amount of carbon in the jth tree in the plot,

and TPA( j) is the trees per acre expansion factor (after

conversion from per acre to per ha) from the RPA

database for the jth tree in the plot. We then aggregated

the plot-level C stocks to the county level:

Cc ¼
X

i

½EVðiÞ3 CpðiÞ� ð3Þ

where Cc is the county-level C stock (units of Mg C),

EV(i) is the volume expansion factor (units of ha) of the

ith plot in the county of interest, and Cp(i) is the carbon

associated with the ith plot. EV(i) was taken from the

RPA database. We then computed carbon density (Mg

C/ha) at the county level as

C ¼ Cc=A ð4Þ

where A is the forest area with live trees within each

county.

We used the condition-level forest type variable from

the RPA database to divide area, stand age, and carbon

stocks between hardwoods and softwoods. The forest

type indicates the dominant species within a condition,

and so we may be assigning some subdominant

softwood trees to hardwood forest types (e.g., blue

spruce within the aspen forest type) and vice versa.

Forest type is an attribute of stands, not individual trees;

many stands contain individual trees that are not of the

species used to name the type. However, it is the

dominant species that have the greatest influence on

most ecological characteristics (e.g., phenology, canopy

characteristics, and wildlife habitat).

Inventory sampling errors for area are mandated not

to exceed 3% per 1 million acres of timber (2% per one

million ha; Alerich et al. 2004) at the 67% confidence

level. Guidelines for volume sampling errors in the West

are 10% per 1 billion cubic feet of growing stock on

timberland (0.5% per 1 3 109 m3; Alerich et al. 2004).

Smaller areas, such as counties, have larger sampling

errors. We calculated sampling errors in timberland area

and volume by county.

For spatially explicit mapping of inventory attributes,

the finest spatial resolution available is the county. Maps

showing, for example, forest carbon density by county

illustrate spatial patterns of forest C stocks, and are

useful to those interested in a particular county.

However, these maps do not reveal the amount of total

forest area within a county unless compared to a map of

forest area. In some areas of the western United States

where forest cover is low (e.g., in Arizona or Nevada),

mapping county-level values may enhance their impor-

tance compared to the county forest area. Thus, we also

plotted the county carbon density values for only those

pixels identified as forest from the moderate-resolution

imaging spectroradiometer (MODIS) land cover classi-

fication (discussed in Other data sources). Lacking

additional information about plot locations, we assigned

each forested MODIS pixel the same county carbon

density. This map reduces the visual impact of a county

with high C density but little forest area compared with

counties with large forest area.

FIG. 1. Methods of calculating carbon stocks from the tree
level to the county level. Boxes with text in italics indicate
variables from the RPA database.
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Other data sources

To compare inventory estimates of forest area with

other sources, we downloaded a 1-km global land cover

classification product derived from MODIS satellite

reflectances (MOD12Q1). The product was developed

using a supervised classification methodology that

combined training sites interpreted from high-resolution

imagery with ancillary data (Friedl et al. 2002). The

algorithm takes advantage of the multispectral, multi-

temporal nature of MODIS imagery. We used the

International Geosphere–Biosphere Programme classifi-

cation map, and identified the following types as forest:

evergreen needleleaf forest, evergreen broadleaf forest,

deciduous needleleaf forest, deciduous broadleaf forest,

and mixed forests. These forest types have canopy cover

.60% and height .2 m. We excluded shrubland and

FIG. 2. (a) Mean plot measurement year within each county as reported in the Resources Planning Act (RPA) database. White
counties are associated with states not considered (e.g., Texas), or with counties that did not have or did not report forest inventory
information in this RPA database. (b) Distribution of measurement years for all plots. Most plots were inventoried in the late
1990s, though in a few states, the most recent (state-level) inventories in the RPA database were conducted as early as 1983
(Colorado).
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savanna cover classes, instead comparing MODIS forest

classes with RPA timberland. Percent forest area within

each county was computed by summing the forested 1-

km MODIS grid cells within a county and dividing by

the total area of all land grid cells within a county.

We compared the inventory-based forest types to a

satellite-derived FIA product. This product was gener-

ated from a classification of satellite reflectances at the 1-

km spatial resolution (Zhu and Evans 1994). The same

eastern and western forest types as in the RPA database

were used in the classification with the exception that

California mixed conifer and western oak types were

specified in the RPA database but not in the satellite

map. A separate map of percent forest cover for each

pixel was also produced by Zhu and Evans. We

estimated the dominant forest type at the county level

by combining the percent forest cover map with the

forest type map.

We compared forest carbon stocks with results from

the Century biogeochemistry model (Parton et al. 1994).

Century models carbon stocks and fluxes in multiple

vegetation classes (e.g., forests) through the simulation

of multiple carbon pools. Carbon fixed by plants (net

primary production) is allocated among living plant

parts; as plants die or leaves drop, carbon is transferred

to dead pools, then soil pools. As part of the Vegetation

FIG. 3. Forest area by county in the western United States. (a) Forest area from Resources Planning Act (RPA) database,
defined as any land that is at least 10% stocked by trees or 5% crown cover, as a percentage of total land area. (b) Percent forest
area that is a softwood forest type. (c) Forest cover from moderate-resolution imaging spectroradiometer (MODIS) 1-km satellite
land cover classification product as a percentage of total county land area. (d) Difference in percent forest area (RPA�MODIS).
Good overall agreement exists between MODIS forest types and RPA timberland, though regional biases occurred.
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Mapping and Analysis Project (VEMAP [VEMAP

Members 1995]), monthly carbon stocks and fluxes in

the coterminous United States were simulated in the

20th century at 0.58 spatial resolution by Century. After

initializing carbon pools with a 3000-year spin up, actual

climate, observed atmospheric CO2 concentrations, and

a map of vegetation classes were used to estimate carbon

cycling from 1895 to 1993. In the Pacific Northwest and

northwestern California, fires were simulated every 300

years, with the last burn specified in 1800. In contrast,

fire return intervals for interior forests were specified as

every 100 years, with the last simulated fire occurring in

1900. These results have been described in previous

studies (VEMAP Members 1995, Schimel et al. 2000).

To compare with RPA estimates, Century forest carbon

stocks were summed in foliage, wood, and root pools

and averaged for the 1984–1993 period. Because of the

inconsistent ‘‘cell’’ boundaries but similar spatial reso-

lution between the Century grid and the county

boundaries, we were unable to directly compare the

two carbon density estimates.

RESULTS

We analyzed over 1.7 3 106 tree measurements on

about 47 000 plots in 428 counties and 12 western states.

The majority of these states had inventories in the late

1990s (Fig. 2a, b). Some states had earlier inventories,

for example, Colorado (1983), Wyoming (1984), and

Nevada (1989).

Sampling errors in timberland area were typically

,5% at the county level for those regions with

significant forest area (Appendix: Fig. A1a). Sampling

errors in timberland volume were ,8% in the Pacific

Northwest, California, and the Northern Rockies

(Appendix: Fig. A1b). Higher values, on the order of

10–20%, occurred in the Southern Rockies or in counties

with minimal forest area (e.g., in Nevada) where

volumes were lower by county.

Forest area

Forest area in the 12 western states was 94 Mha, or

29% of the total land area (Fig. 3a). Timberland area, or

forest area with a minimum productivity, was 62Mha, or

19% of the total land area and 66% of the forest area.

Spatial patterns of timberland were similar to those of

forest area (Appendix: Fig. A2a). Softwoods comprised

81% of the forest area (Fig. 3b) and 87% of the

timberland area in the West (Appendix: Fig. A2b).

Hardwoods dominated in coastal and southern Califor-

nia, in Arizona, and in the Great Plains. Lower softwood

percentages in timberland compared to forest land

occurred in Nevada, Utah, and western Colorado, where

hardwood forests (e.g., aspen) were more productive

than softwood forests dominated by pinyon-juniper. In

other locations with extensive lower productivity mes-

quite or oak woodland (e.g., southwest Arizona,

California), more productive softwood forests contrib-

uted to a higher percentage of timberland area.

The majority of MODIS forest cover in the West was

evergreen needleleaf, with 85% of the forest area

containing this forest class (Appendix: Fig. A2c). The

mixed forests class contributed 12% of the forest area.

MODIS-derived forest area had similar spatial patterns

as RPA timberland (Fig. 3c), and similar total area (56

Mha vs. 62 Mha of RPA timberland). Mapping

differences revealed some spatial patterns (Fig. 3d).

FIG. 4. RPA percent timberland area vs. MODIS percent forest area by county. Thick symbols and error bars indicate averages
and standard deviations, respectively, for 10% RPA timberland area bins. The solid line is the 1:1 line; the dashed line is from linear
least-squares regression (using all counties). Regression equation, mean bias error (MBE), root-mean-square error (RMSE), R2,
and standard error of estimate (SEE) are shown.
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MODIS percent forest cover in counties along the coast

from California to Washington was typically higher

than the RPA percent timberland area by 5–20%. In

contrast, on the east side of the Cascades, in the Sierra

Nevada, and throughout most of the Rockies, RPA

estimates were higher than MODIS estimates by 5–20%.

The comparison between the two estimates of percent

forest area within a county suggested agreement between

MODIS and RPA estimates, with the least-squares

regression line very close to the 1:1 line, R2¼ 0.91, and a

root-mean-square error of 9% (Fig. 4).

Stand age

Mean stand age (weighted by area within a given

county) for all forests across the region was 101 years

(Fig. 5a). Softwoods had a mean stand age of 105 years,

and the mean age of hardwoods was 76 years. The

softwoods distribution (and thus the total distribution)

was sharply peaked, with most areas having stand ages

of 60–100 years. The hardwoods were more evenly

distributed among the young age classes, but like the

softwoods, exhibited a rapid decrease in area of older

stands. The majority of stands (by area) originated in the

few decades around 1900, with some stands originating

much earlier, before 1800 (Fig. 5b).

Counties with significant forest area throughout the

West had mean stand ages .80 years (Fig. 6a), mostly

driven by softwood stand age (Fig. 6d). An exception

occurred in the coastal region of Washington and

Oregon, where stand ages were ,50 years. Hardwood

stand ages were younger than those of softwoods (Fig.

6c). Hardwoods in the southern states were typically

older than those in the northern states (.80 years vs.

,60 years). Spatial patterns of the year of stand origin

were variable across the region (Fig. 6b). For locations

with significant forest area, coastal Oregon and Wash-

FIG. 5. (a) Regional (western United States) distribution of stand age (by area) for all trees (crosses), softwoods (diamonds),
and hardwoods (triangles). (b) Regional distribution of year of stand origin.
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ington stands were most recently disturbed, typically

after the 1920s, with some counties as late as the 1940s

and 1950s. Stands in eastern Washington, northern

Idaho, and northwestern Montana also originated in the

early to mid-1900s. In contrast, stands in California and

Colorado were established earlier, in the mid-1800s.

Forest types

In the western United States, softwood forest types

dominated, with pinyon–juniper forest types covering

the most forest area (21 Mha), followed by Douglas-fir

and ponderosa pine types (Figs. 7 and 8a). Very little

pinyon–juniper forest was productive enough to be

considered timberland, whereas most of the area

associated with other softwoods was considered timber-

land. Western oak and aspen/birch and forest types had

the largest area among hardwood forest types, with 4–5

Mha each. The satellite-derived FIA map of forest types

(Fig. 8b) generally agreed with the RPA inventory

estimates. In the satellite-derived map, ponderosa pine

occurred on the eastern side of the northern Cascades

and lodgepole pine occurred in much of the northern

Rockies; Douglas-fir was specified in these areas in the

inventory map. The confusion matrix (Table 1) revealed

better agreement in the pinyon-juniper, Douglas-fir, and

ponderosa pine type than other forest types. For

aspen/birch, the satellite-derived classification did not

have enough area in any county to qualify as dominant,

whereas the RPA database had 13 aspen/birch-domi-

nated counties.

FIG. 6. (a) Mean stand age for all forest types. (b) Mean year of stand origin. (c) Mean stand age for hardwoods. (d) Mean
stand age for softwoods. Typical stand ages throughout the region were 80–100 years. The youngest stands were in the Coast
Ranges and on the west side of the Cascades in Washington and Oregon. Hardwoods tended to occur in younger stands than
softwoods by several decades.
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Outside the Great Basin and eastern slope of the

Rockies, the RPA forest types plotted were not the
majority, but instead constituted a smaller fraction of

the total forest area (i.e., ,50%; Fig. 8c). For example,

in the northern Rockies, in counties where it is most
common, Douglas-fir made up only 20–30% of the total

area. Although the satellite-derived FIA map showed
similar patterns, the percentage of area occupied by the

dominant forest type was higher than estimated from the
RPA inventory, particularly in the Northwest (Fig. 8d).

For example, on the east side of the Cascades, the FIA

map reported that ponderosa pine occurred in 40-70% of
the forest area, whereas the RPA inventory values were

20–40%. This difference suggests that the forests in the
RPA inventory database were more heterogeneous than

those in the satellite-derived FIA map.

Carbon stocks

Regionally, total carbon stored in live biomass pools
(wood, foliage, coarse roots) was 6012 Tg C; 87% was in

softwood forest types. Carbon density (carbon per area)
was 74 Mg C/ha. Softwoods had higher carbon density

(76 Mg C/ha) compared with hardwoods (63 Mg C/ha).

Spatial patterns of carbon density revealed that most C
occurred in the coastal regions (including the Cascade

Mountains) from northern California northward (.120
Mg C/ha; Fig. 9a). The forests of the Sierra Nevada also

had high carbon density, with values exceeding 100 Mg
C/ha. Interior forests stored less C. In the northern

Rockies, values were around 80 Mg C/ha, whereas in

Colorado, stocks were typically ,80 Mg C/ha. Soft-

woods stored most of the carbon except in some regions

of coastal California and southern Arizona. Distributing

county-level carbon density values to only forested

locations (determined from the MODIS land cover

classification) highlighted the regions with significant

forest area, and deemphasized the low forest cover in the

Great Basin region (Nevada and surrounding areas) as

well as in the Southwest (Fig. 9b).

Carbon stocks in interior forests (i.e., in the Rocky

Mountains and Southwest where forest cover is signifi-

cant) from the Century VEMAP simulations generally

were similar to those from the RPA database (Fig. 9c).

Carbon densities from both estimates in these forests were

around 50 Mg C/ha or below. Notable disagreements

occurred in the Pacific Northwest and in the Sierra

Nevada. The RPA database reported values of ;100

Mg/ha in these regions, occasionally reaching 150 Mg/ha.

In contrast, Century reported values of 200–450 Mg/ha.

DISCUSSION

The stand age distribution of forests across the West

peaked at 60–100 years; once differences in measure-

ment year are accounted for, this pattern is similar to

that reported in a national assessment of forest

characteristics based on similar data as ours (Smith et

al. 2004). This pattern contrasts with theoretical age

distributions based on a random fire return interval

(Van Wagner 1978, Taylor and Carroll 2004), and

indicates that western forests are not in a steady state

condition. These theoretical distributions follow a

negative exponential function, with the largest fraction

in the youngest age classes, in contrast to the inventory

results. (The inventory results presented here are based

on area, not number of stands; although we found that

averaging the inventory plots produced roughly similar

attribute patterns as the more proper area weighting, the

area weighting may mask some variability at the plot

level.) Climate may act to impose spatial synchrony on

wildfires (Swetnam and Betancourt 1990, 1998, West-

erling et al. 2003, Schoennagel et al. 2005). A random

fire return interval, and thus a negative exponential age

distribution, may therefore not represent historical

conditions (i.e., pre-European settlement). Large areas

burned in the late 1800s and early 1900s in some regions

are attributed to favorable climate conditions as well as

to Euro-American settlement (Shinneman and Baker

1997, Swetnam and Betancourt 1998, Veblen et al.

2000). In some areas, human influences (e.g., grazing,

fire suppression) during this time and later reduced fire

return intervals dramatically. The reduction in preva-

lence of both stand-replacing and understory fire as

disturbances has led to the expansion of forests along

forest-grassland ecotones (Mast et al. 1998) as well as

the additional recruitment of trees within stand types

that have been historically characterized by a low stem

density, such as ponderosa pine in the Southwest

(Covington and Moore 1994). The strong influence of

stand age on such ecosystem processes as net C fluxes

FIG. 7. Area of forest and timberland (forests that meet a
minimum level of productivity) by forest type group in the
western United States.
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(Hicke et al. 2003, Pregitzer and Euskirchen 2004,

Kashian et al. 2006) illustrates the importance of

understanding the causes and consequences of the

disturbance-induced patterns in regional stand age

distribution.

Stand ages, forest cover and type, and climate

combined to determine patterns of carbon stocks.

Despite younger stand ages, the higher forest cover

and favorable growing conditions of the Pacific North-

west resulted in the highest forest C stocks. Slightly

lower stocks occurred in the Sierra Nevada in forests

with older stands and reduced area of productive forest

(timberland). The continental climate of the Rocky

Mountains, including lower temperatures and precipi-

tation, caused reduced C stocks despite high forest

cover. In the Southwest, arid and semi-arid conditions

produced sparser forest cover and lower forest biomass.

In the West, softwoods dominated hardwoods in

terms of cover and C stocks. Yet the importance of

hardwoods in some regions (e.g., California), their

different age structure, and their different dynamics

(e.g., phenology) suggest that these forest types should

be considered separately in regional ecosystem studies in

the West. In some locations such as the Pacific

Northwest, softwood forest types associated with early

successional species such as Alnus had younger stand

FIG. 8. Dominant forest types (by area) from (a) the RPA inventory measurements and (b) the Forest Inventory and Analysis
(FIA) satellite-derived classification. Also shown is the percent area of the dominant forest type within each county from the (c)
RPA inventory and (d) FIA satellite data sets. Douglas-fir, ponderosa pine, and lodgepole pine forest types dominate in the
mountainous areas, with pinyon–juniper covering the largest area in the drier regions. The RPA inventory had more Douglas-fir
and lodgepole pine forest in the northern regions compared with the FIA satellite data set, though these forest types were less
dominant (i.e., covered a smaller percentage of each county) than represented in the FIA satellite classes.
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ages, influencing carbon stocks. However, these stands

constituted typically less than 20% of a county’s forest

area, and therefore the impact of these species was

minimal at these spatial scales.

Western forests contain less total carbon than eastern

forests (which store 10 250 Tg C) (Brown et al. 1999).

Hardwoods constituted the majority of carbon in

eastern forests (80%), whereas softwoods dominated in

western forests (87%). Carbon density in western

hardwoods was lower than in eastern hardwoods (63

vs. 80 Mg C/ha), yet carbon density in softwoods was

substantially higher in the West (76 vs. 55 Mg C/ha;

Brown et al. 1999).

Our C stock results are comparable to those of other

inventory-based methods. Turner et al. (1995) reported

regional average C densities in the Pacific Northwest of

120 Mg C/ha on the west side of the Cascades and 50

Mg C/ha on the east side. Birdsey and Lewis (2003)

calculated that the C density in Washington was 91 Mg

C/ha. We find similar values in these regions (Fig. 9).

Westwide, our estimates of 6012 Tg C were higher than

that reported by Birdsey and Lewis (2003) by about

10%.

Forest cover definitions vary widely, as do means of

estimating cover (Hansen and DeFries 2004). The

MODIS data set slightly underestimated forest area

compared to the RPA estimates as indicated by the

mean bias error, particularly at the lower percent forest

area values. This may be attributable to the Interna-

tional Geosphere–Biosphere Programme definition of

forest cover classes used in the MODIS algorithm, which

specifies canopy cover .60%. Our calculation of percent

MODIS forest cover at the county level assumed that

each MODIS pixel was 100% covered by forest. The

inventory estimates reported here used ground-based

measurements, subsampling, and different cover defini-

tions (forest vs. timberland) than the spatially explicit

satellite-derived land cover classification product. How-

ever, after choosing the cover characteristics in each

data set that produced the most consistent comparison,

i.e., timberland compared to forest types only (no

shrublands or savannas), we found good agreement

between the MODIS and RPA cover estimates.

The large differences between the inventory and

Century carbon stocks in the coastal states were most

likely a result of disturbances since 1900, mainly

harvesting and fire, that reduced stand ages and

therefore biomass. These disturbances were not included

in the Century model runs, which simulated forest

disturbances in 1800, earlier than realistic (see stand age

map, Fig. 6). Thus, modeled stands were older and

resulting carbon stocks were higher in these regions in

the 1980s and 1990s than estimates from inventories.

This database of forest characteristics is useful for

studies that model biogeochemical cycling over larger

scales (e.g., VEMAP Members 1995, McGuire et al.

2001). The variables reported here are important in

driving biogeochemical cycle dynamics. In addition, this

information can assist in estimating carbon dynamics as

forested areas undergo changes following fire, insect

outbreaks, or harvest. Recent changes in disturbance

and harvest regimes are not reflected in the many current

model simulations. Inventory-based estimates of these

state variables are valuable for validating simulation

runs as well as understanding the importance of missing

processes in models, as we demonstrate. They also may

be useful in newer data assimilation techniques that

constrain model results in optimal ways using rigorous

mathematical methods (Braswell et al. 2005, White and

Luo 2005, Williams et al. 2005, Sacks et al. 2006).

Are the inventory-derived forest characteristics more

accurate than other sources? At the plot level, observa-

tions of tree diameters, species, and stand age suggest

that inventories produce highly accurate results of stand

age, biomass/carbon stocks, and forest type. Scaling to

coarser resolution products relies on the inventory

TABLE 1. Confusion matrix between county-level RPA forest types and FIA satellite-derived forest types.

Forest type Nonforest
Pinyon–
juniper

Douglas-
fir

Ponderosa
pine

Fir–spruce–
mountain hemlock

Lodgepole
pine

Hemlock–
Sitka spruce

Nonforest 0 0 0 0 0 0 0
Pinyon–juniper 6 84 1 8 1 3 0
Douglas-fir 0 3 44 19 3 14 1
Ponderosa pine 6 5 1 52 1 1 0
Fir–spruce–mountain hemlock 0 3 1 3 5 3 0
Lodgepole pine 1 1 0 0 4 23 0
Hemlock–Sitka spruce 0 0 2 0 0 0 4
CA mixed conifer 0 0 0 7 1 0 0
Aspen–birch 1 5 1 1 3 1 0
Western oak 4 1 0 4 0 1 0
Other softwoods 4 1 0 0 1 0 0
Other hardwoods 50 3 4 2 0 0 0
Total 72 106 54 96 19 46 5

Notes: The confusion matrix lists the number of trees within each combination of forest types from the two classification
methods as identified by the row and column headings. Diagonal elements indicate classification agreement between both data sets;
off-diagonal elements indicate disagreement. Columns are from satellite-derived classification; rows are inventory-derived
classification. Overall agreement (sum of diagonal elements divided by total number of counties) is 52%.
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program’s sampling methods, whose uncertainties are

mapped in Appendix: Fig. A1. Therefore, we suggest

that inventory methods may be more accurate than

other spatially explicit sources since ecosystem models

may not include all relevant processes (as illustrated

here), and remotely sensed imagery that relies on optical

imagery that may have errors associated with sparse

forests and/or lack of sensitivity to biomass at high leaf

area (Zhang and Kondragunta 2006) or may have

difficulty in discriminating forest types (Zhu and Evans

1994). Forest cover, on the other hand, may not be as

accurately represented in the inventory as in the satellite

imagery, in part because the remotely sensed product is

spatially complete and the inventory method relies on

spatial sampling. Improvements in estimates of some

forest properties such as biomass will occur through

advances in remote sensing (e.g., lidar), whereas

improvements in estimates of other attributes, such as

stand age, may remain elusive, suggesting a continued

reliance on inventory estimates.

Several sources of uncertainty exist that may influence

our results. Stand ages are subject to some uncertainty

since field crews subjectively select representative trees

on the plots and since ages were often estimated in the

field from cores. Grouping by 20-year age bins

minimizes these issues, however, and we feel that the

gross patterns described in this paper are realistic. A

second source of uncertainty is that the measured plots

and surrounding area used to develop area and volume

population expansion factors represent only a fraction

of the landscape, and so may smooth out some

variability. This sampling error is accounted for in the

calculated standard errors.

Another uncertainty is the wide range of measurement

years across the West. Although we quantified this 20-

year range (Fig. 2), we urge caution when interpreting

the results. With respect to stand age, the indication of

non-steady state conditions from the sharply peaked age

distribution implies that the range of measurement years

could result in under- or overestimates of important

regional variability in stand age. Ideally, spatial

comparisons of stand ages (as we show here) would be

derived from concurrent inventories. Instead, the range

of measurement years could flatten or sharpen age

distributions depending on the year of local disturbance.

Analyses using future inventories will alleviate these

concerns.

Finally, the application of national-scale allometric

equations for computing biomass from dbh produces

uncertainty associated with stand-level and regional

variability. The stand-level source of variability cannot

be captured with the existing inventory sampling design,

but instead would require additional sampling. Al-

though their generality may produce regional biases,

national-scale allometric equations have the advantage

of minimizing expense and maximizing simplicity,

transparency, and consistency.

CONCLUSIONS

Inventories provide an excellent means of evaluating

forest ecosystem properties. The Resources Planning

Act database provided by the USDA Forest Service

contains information about a variety of properties based

on millions of tree measurements on public and private

lands. The most recent RPA database consists of

inventories typically from the late 1990s, but also

includes earlier and later inventories. The design of the

Forest Service inventory permits spatial analysis at the

county scale and coarser, although the use of a finer

resolution forest cover map (e.g., from MODIS) allows

county-level values to be distributed to forested areas

only.

Measurements in the western United States were

analyzed to assess forest area, stand age, dominant

forest type, and carbon stocks. We employed a method

that includes every tree measured within a plot to

calculate carbon stocks, thus avoiding uncertainties

associated with expanding county-level growing stock

volume to include non-timber species and tree sizes.

Inventory- and satellite-derived area and forest type

were generally comparable across a range of forest area.

Overall, stand ages of western forests peaked in the 60–

100 year classes, likely the result of fires and human

activities beginning in the 1800s.

In contrast to eastern forests, western forest carbon

stocks are dominated by softwoods; hardwoods are

significant in limited regions, such as the coastal regions

of central California. Carbon stocks were concentrated

in the coastal and Cascade areas of Washington,

Oregon, and northern California. Forests in the Sierra

Nevada and Rocky Mountains had lower amounts.

Good agreement occurred between inventory-based

carbon stocks and those estimated using a historical

model run of a biogeochemical model. Exceptions

occurred in regions where harvesting and natural

disturbances within the last 100 years reduced stand

ages (and therefore biomass) compared to model results,

which simulated up to 200 years of post-disturbance

growth.

TABLE 1. Extended.

CA mixed
conifer

Aspen–
birch

Western
oak

Other
softwoods

Other
hardwoods Total

0 0 0 0 0 0
0 0 0 0 0 103
0 0 0 1 1 86
0 0 0 0 2 68
0 0 0 1 0 16
0 0 0 0 0 29
0 0 0 0 0 6
0 0 0 0 0 8
0 0 0 0 1 13
0 0 0 0 12 22
0 0 0 0 1 7
0 0 0 1 14 74
0 0 0 3 31 432
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Inventories will continue to provide important infor-

mation about forest ecosystems. With recent interest in

understanding forest dynamics at landscape to regional

scales, spatially explicit analyses of inventory measure-

ments will remain valuable for describing patterns and

understanding driving processes. Furthermore, with the

advance of satellite imagery and biogeochemical mod-

eling, inventories provide valuable information for

syntheses and comparisons among different methodol-

ogies (Baccini et al. 2004, Van Tuyl et al. 2005, Masek

and Collatz 2006, Zhang and Kondragunta 2006).
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FIG. 9. (a) Carbon density in forests calculated from the RPA database. (b) Carbon density plotted only for forested locations within
a county as determined from theMODIS land cover classification. (c) Carbon density for forests from the Century biogeochemical model
using the 1984–1993 average fromVEMAP simulation (VEMAPMembers 1995). The color key in panel (a) applies to panels (b) and (c) as
well. The most forest carbon occurred in the coastal forests from northern California north. Most of the carbon in the West was in
softwoods except along the coast of southern California and in southern Arizona. Good agreement occurred between the inventory
carbon stocks and the Century simulations except in the Pacific Northwest and SierraNevada. In these regions, disturbances that were not
accounted for in the Century modeling reduced stand ages and therefore carbon stocks compared to model estimates.
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APPENDIX

A figure showing sampling errors at the 67% confidence limit reported for timberland area and timberland volume, and a figure
showing forest area by county in the western United States (Ecological Archives A017-096-A1).
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