United States
Department of
Agriculture
Forest Service
Pacific Northwest Research Station

General Technical
Report
PNW-GTR-340
August 1994
04

Software for Computing Plant BiomassBIOPAK Users Guide

Joseph E. Means, Heather A. Hansen, Greg J. Koerper, Paul B. Alaback, and Mark W. Klopsch

Obtaining the Program and Technical Support

BI OPAK is di stributed by the Forest Resources Systens Institute (FORS), a nonprofit organization that searches out and distributes software for forestrel ated appl ications. A fee of U.S. $\$ 50$ is charged to cover costs of di sks, duplication, di stribution, and tel ephone support to answer user questions. For people in countries with currency exchange problens, the fee is reduced to U.S. $\$ 25$. FORS can be contacted at:

The Forest Resource Systens Institute
122 Helton Court
Fl orence, Al abama 35630
(205) 767-0250 Fax (205) 767-3768

For additional copies of this publication contact:
Publications
Pacific Northwest Research Station
P. O Box 3890

Portland, Oregon 97208-3890
(503) 326-7128 Fax (503) 326-2455 USDA FS E- nai I RI S: R6/ PNW

Disclaimer

The Bl OPAK software is public domain and the recipient may neither assert any propriety rights thereto nor represent themto anyone as other than Governmentproduced prograns.

The use of trade, firm or corporation names in this publication is for the inf ormation and conveni ence of the reader. Such use does not constitute an official endorsenent or approval by the U.S. Departnent of Agriculture or Oregon State Uni versity of any product or service to the exclusi on of others that may be suitable.

BI OPAK uses LI STR made by Buerg Software. Listr is shareware that users are encouraged to regi ster for $\mathbf{\$ 2 0} 00$ with Buerg Software, 139 White Oak Circle, Pet al una, Cal if ornia 94952; (707) 778-1811.

Authors

J OSEPH E. MEANS is a research forester, U.S. Departnent of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sci ences Laboratory, 3200 S. W Jefferson Why, Corvallis, OR 97331; HEATHER A HANSEN and MARK W KLOPSCH are research associ ates, Departnent of Forest Science, Oregon State Uni versity, Corvallis, OR 97331; GREG J. KOERPER is a programmer/anal yst, U.S. Envi ronmental Protection Agency, Envi ronmental Research Laboratory, JSB 166-B, Corvallis, OR 97333; and PAUL B. ALABACK is Assi stant Professor, School of Forestry, Uni versity of Montana, Mssoul a, M 59812.

Abstract

Means, Joseph E.; Hansen, Heather A; Koerper, Greg J.; Al aback, Paul B; Kl opsch, Mark W 1994. Sof tware for computing pl ant bi onass--BI OPAK users gui de. Gen. Tech. Rep. PNWGTR- 340. Portl and, OR: U.S. Depart nent of Agriculture, Forest Service, Pacific Northwest Research Station. 184 p.

BI OPAK is a menu-driven package of computer prograns for IBMcompatible personal computers that cal cul ates the bi onass, area, hei ght, length, or vol une of plant components (leaves, branches, stem crown, and roots). The routines were written in FoxPro, Fortran, and C.

BI OPAK was created to facilitate linking of a diverse array of vegetation datasets with the appropriate subset of available equations for estimating pl ant components, such as bi onass and I eaf area. BI OPAK produces reports that are formatted for people and files that are compatible with other softuare. Other reports docunent the design of a computation run and the equations used. BI OPAK incl udes a library of about 1,000 prediction equations and an editor for updating it. Most of the equations in the librarv were devel oped in the Pacific- Northwest, incl udi ng southeast Al aska.

Keywords: Di mensi on anal ysi s, software, plant bi onass, pl ant leaf area, plant vol une, crown mass, crown vol une, nanual, microcomputer, users gui de.

Acknowledgments

This publication was devel oped in cooperation with the Avi ation and Fire Managenent Office, Pacific Northwest Regi on, USDA Forest Service, and the Deschutes, Mal heur, Mbunt Hood, Si ski you, Si usl aw, Wal I owa-Whitman, and Willamette National Forests. Additional support cane from National Sci ence Foundati on grant BSR- 8514325 to Oregon State Uni versity. The authors thank J ohn Bai nbri dge, Al an Batie, Jonathan H Bosch, Hsueh-J en Chen, Tony Chou, Hongyan Li, Raghava R. Pareddy Davi d Randal I, Zhao-M ng Song, Gody Spycher, and Shannon Whi tnore for programing support, Howard C. Doane and α ga Kranki na for entering and checking equations in the equation library for the Pacific Northuest, and Leanne M Mtchell for quality control assistance.

Contents

Detailed contents are given at the begi nning of each chapter and section.
1 VELCOME
2 Purpose of BI OPAK2 Intended Users and Fi el ds of Study
2 Overvi ew of Users Gui de
3 Nbtational Conventions
3 Estimating Pl ant Components
5 Be Car ef ul
6 I NSTALLATI ON
6 System Requi rements
6 Files Shi pped with BI OPAK
7 Instal lation on a PC
9 Instal lation on a Net nork
11 Files on the Bl OPAK di rectory
11 Perfor nance Enhancement
13 GETTI NG STARTED
13 Overvi ew of Feat ures
21 Suggestions for Using BI OPAK
24 REFERENCE
25 Input Data File
29 Design a Run
41 Li brary Editor
55 Cal cul ate Pl ant Components
57 Generate Reports
59 View Reports
61 Reports and Other Output
69 TUTORI ALS
70 Introduction to the Tutorial s
70 The Tutorial Dat aset
71 Lesson One--Introduction to Design a Run and View Reports
76 Lesson Two--Introduction to Pl ant Component Cal culations and
Generating Reports
80 Lesson Three--Introduction to Di agnostic Reports
82 Lesson Four--Introduction to Equation Li brary and Reassignments
85 Lesson Fi ve- - Pl ant Component Cal cul ations with Reassi gnments
88 Lesson Six--Editing the Equation Li brary

91 LI TERATURE CI TED

94 APPENDI CES

95 Codes

103 Cust oni zi ng BI OPAK
113 Equation Li brary
131 Equation Sel ection Penal ties (ESP)
141 Files
144 Lifef orm
146 Sel ecting Equations and Summations
156 Troubl eshooting
171 Units
173 GLOSSARY
177 I NDEX

List of Figures

14 Fi gure l--Rel ationshi ps between BI OPAK procedures and important files.
134 Fi gure 2--Default summations for Tree, Shrub and Coppice lifeforns.
135 Fi gure 3--Default summations for Herb, Grass and Sedge Iifeforns.
136 Fi gure 4--Default summations for Bryophyte (Mbss) and Lichen lifeforns. 148 Figure 5--Fl ow of inf ormation in the Equation Reassi gnment process and sel ection of an equation from the Equation List File.

List of Tables

44 Table I--Equation types and corresponding numbers recogni zed by Bl OPAK
Table 2-- BI OPAK system for deriving Pl ant Component codes
147
Table 3--Elements in the Original Equation Request
151
152
171
172
Table 4--Inf ormation that may be in an Equation Reassi gnment
Table 5--Infornation in the Request to Li brary
Table 6--Valid Paraneter Units
Table 7--Valid Component Units

THIS PAGE LEFT BLANK INTENTIONALLY

WELCOME

Thi schapter introduces the Bl OPAK sof tware and users guide and its purpose and Iimitations. Pl ease read the warni ng at the end of the chapter bef ore proceedi ng .

Section
2 Purpose of BI OPAK
2 Intended Users and Fi el ds of Study
2 Overvi ew of Users Gui de
Readi ng suggestions
2 Purposes of chapters
3 Notational Conventions
3 Estimating Pl ant Components
3 The di mensi on anal ysi s approach
4 Potential problens with the di nension anal ysis approach 5 Be Caref ul

```
BI OPAK
                Mai n- Menu
    Design a run
    edit equation Li brary
    Cal cul ate pl ant components
    Generate reports
    Vi ew reports or data
goto dos Shel I
Qui t
```

Most Recently Used File Nanes
Run Desi gn File : D: \BI OPAK TESTDATA TUTOR. RD
Equati on Li brary File : D: \BI OPAK TESTDATA\ BI OLI B. EQN
I nput Data File : Di \Bl OPAK TESTDATA TUTOR. DAT
I nter nedi ate Bi nary File : D: \BI OPAK TESTDATA| TUTOR. I BF

Purpose of BIOPAK

BI OPAK is a menu-dri ven package of computer prograns that cal culates the bi onass, area, hei ght, length, or vol une of plant components (l eaves, branches, stem crown, and roots). BI OPAK was created to facilitate linking a di verse array of vegetation datasets with an appropriate subset of available equations for estimating plant components.

It was devel oped for use on I BM compatible personal computers (PCs). The routines are written in FoxPro, Fortran, and C.

Intended Users and Fields of Study

Pl ant component esti mates are used by researchers and resource managers in forest and range sci ences: fire managenent--fuel s -assessment; forest managenent--wildife habitat, site productivity, and ecosystem monitoring; forest ecol ogy--nutrient cycling, pl ant productivity; range managenent--brouse estimates; and wildife ecol ogy-foliar cover, browse and habitat.

Users should have a basic know edge of DOS for instaling and managing files used and produced by BI OPAK.

Overview of Users Guide

Reading suggestions

A gener al understandi ng of the BI OPAK softuare will hel pavid mistakes that nay-i nval idate the results. We suggest you at least read Getting Started and do the first few tutorials before naking any pl ant component cal cul ations with your own data.

Sone users will want to use the nore advanced feat ures, for example, Equation Li brary editing, and Customizing BI OPAK. Mbst of these are introduced in the tutorials. Others are covered in the appendices.

Purposes of chapters

Chapter	Contents
Vell cone	Introduction to the software and users gui de. Purpose of the program and its limitations.
I nstal l ation	How to install the software on a personal computer or network.
Getting Started	An overvi ew of BI OPAK feat ures and suggestions for its use. Logi cal sequences of steps for cal culating plant components are di scussed.
Ref erence	Each main menu item is covered in a separate reference section. The order of the sections corresponds to the mai n menu. A section on the input data file, and reports and other output, is al so incl uded.
Tutori al s	Tutorial s that are intended to introduce the software

gradual I y.
Appendi ces The appendi ces present nore detailed infornation than the reference sections, such as code definitions and instructions for customizing BI OPAK They are presented in al phabetical order.
G ossary The gl ossary incl udes important terns and concepts covered in the software and user's gui de.
I ndex Detailed index covering keywords, terns, concepts, and section headi ngs.

Notational Conventions

The following notational conventions are used in this users guide:

Bold	Used for references to BI OPAK software menu sel ections or commands to be typed by user.
Italics	Used for references to sections of the Bl OPAK users guide.
CAPS	Used for file nanes.
Underli ine	Used for references to windows and section headings in the BI OPAK sof tware.
$<>$	Used to i ndi cate keyboard commands, for example, <nter> <F3>
*	Used as a wildcard character in file names. For example, *. RD uould indicate any file with the extensi on. RD.

Estimating Plant Components

During the past two decades, plant components, such as bi onass and leaf area, have been wi del y vi eued as increasi ngl y i mportant ecosyst em parameters. Many different approaches have been taken to esti mate them (Al endag 1980, Pi eper 1978, Standi sh and others 1985, Val entine and others 1984, Wharton and Cuni a 1987). The nost accurate techniques (clipping, separating, and wei ghi ng) are tine consuming; they lend thensel ves to site-specific, intensive studies and destroy vegetation on the pl ot being sampl ed.

The dimension analysis approach

Over the past decade nost studies of ecosystem structure and dynamics have used the allonetric or di mensi on anal ysis approach to bi onass sampling (Grier and Logan 1977, Wittaker and Wboduel I 1968, Whittaker and others 1974). Di mensi on anal ysis invol ves predicting attributes that are difficult to measure from attributes that are easily measured. Prediction is made from equations devel oped from the destructive sampling nethod (Al endag 1980, Val entine and others 1984). Di mensi on anal ysis can yield precise and realistic estimates of plant bi onass in envi ronments similar to where the origi nal destructive data were gathered.

Thi s approach is al so usef ul when equations exi st for indi vidual components,
such as stem branch, and foliage bi onass, but not for a component, such as tot al aboveground bi onass, that conbi nes several others. In this case, predi cted val ues for the indi vidual components can be summed to obt ai \mathbf{n} the desi red val ue. Schl aegel and Kennedy (1984) found such sumnations gi ve estimates not significantly different from a single regression for the total.

Potential problems with the dimension analysis approach

The ease of obtaining esti nates of plant components, especialy with softuare like BI OPAK, makes dimensi on anal ysis one of the nost. easily misused techni ques, primarily from three common classes of problens.

First, problens can occur when equations are being constructed. 'Errors from i naccurate measurenent, choice of model, fitting of paraneters, and spatial variation within a sampled stand are di scussed by Wbods and others, (1991). Errors al so may be caused by bi as in sel ecting the sampl es used to build an equation. Marshal I and Whring (1986), for example, found that equations based on tree di aneter overestimated leaf area of an old-grouth stand of Dougl as-fir (Pseudotsuqa menzi esii (Mrb.) Franco) and western hent ock (Tsuqa heterophvlla (Raf.) Sarg.) by a factor of two and suggested the problem was nainly with estimates for large trees. Apparently, the old-grouth Dougl as-fir trees sel ected to build the equations from were well formed with no large parts of crown or bol e missing, yet necrosis and breakage is common in old-grouth stands.

Second, probl ens of overextrapolation or underextrapol ation can occur. In esti nating tree bi onass, for example, sampl es used to devel op the rel ation of di aneter to bi onass often do not incl ude the range of di ameters that the equations ultinatel y will be used for. Bi onass estimates for plants larger or snaller than those sampl ed may be inaccurate; for example, leaf bi onass per Dougl as-fir tree seens to increase exponentially with stemdianeter initially, but increases linearly or level s off at larger di aneters of 1 to 3 neters. Extrapol ation to leaf areas of large trees by using an equation devel oped with data from snaller trees could overesti nate bi onass greatly. No data currently exist on this potentially serious problem

Athird type of problemis the difference in grouth forns of the same species from site to site. Indi vidual s of the same speci es have been shown to have different rel ations of plant di mensi ons to accuml ated bi onass or leaf area when found on sites with different potential productivities (Espi nosa- Bancal ari and others 1987, Koer per and Ri chardson 1980), envi ronnents (Buech and Rugg 1989, Long and Smith 1988, Madgwick 1970, Sachs 1983), or pl ant densities (annual herbs: Wéi ner and Thonas 1992; trees: Pearson and others 1984, Sachs 1983). When annual herbs are competing, the allonetric relation anong i ndi vi dual s at one point in time is not the same as the allonetric grouth traj ectori es of indi vi dual s (Véi ner and Thonas 1992). St and devel opnent al stages (Al aback 1986, Al aback 1987, Dean and Long 1986), thi nni ng and fertilization (Brix and Mtchell 1983), and tree canopy cl ass (Thompson 1989) al so have been rel ated to changes in rel ations between bi onass or leaf area and pl ant di nensi on. Thus, equations for different species of the same lifeform of ten are quite different (Ghol z and others 1979, Standi sh and others 1985, Stanek and State 1978, Whring and others 1982).

Rel ations of plant di mensi ons to bi onass are not equally subj ect to change with different site conditions. Plant measurenents nost directly rel ated to vol une,
such as stem di aneter (Buech and Rugg 1989), hei ght, and formfactor, or rel ated to leaf area, such as sapwood area and distance to live crown (Long and Smith 1988), nay be rel ativel y robust when applied to differing site conditions. In contrast, rel ations of bi omass to percentage of ground cover can vary greatly with site and stand devel opmental characteristics (Alaback 1987, Daubenmi re 1968).

To avoid these problens, users of BI OPAK are advi sed to read the section Getting Started: Suggestions for Using Bl OPAK, and to use the nost appropriate equations.

Be Careful

Examine resul ts thoroughly. Though Bl OPAK will sel ect the best equation according to its logic, your logic may be different. Equations available in its library may be inadequate for some species on some sites. BI OPAK may not sel ect the equation you wish if it is not specified completely in an Equation Reassi gnment. BI OPAK makes it easy to use compl etel y inappropriate equations gi ving meani ngl ess results. We strongly advi se users to closel y exami ne the equations used (see Reference: Reports and Other Output: Di agnostic, reports) and output. Getting Started: Suggestions for Using BI OPAK to increase your likel ihood of getting reasonable estimates.

INSTALLATION

Thi s chapter expl ai ns how to install the software on a personal computer or

Section

```
6 System Requi rements
6 Files Shi pped with BI OPAK
7 Installation on a PC
8 Starting Bl OPAK installed on a PC
8 Verifying Bl OPAK installation on a PC
9 I nstal I ati on on a Net work
10 Starting Bl OPAK on a net nork
11 Verifying BI OPAK installation on a netuork
11 Files on the BI OPAK directory
11 Performance Enhancenent
11 Use of RAM di sk as temporary di rectory
12. Use of smaller equation Iibrary and datasets
```


System Requirements

BI OPAK runs on I BM compatible PCs and requires the following:

- DOS 3. 3 or hi gher (type VER at the DOS prompt to check versi on).
- 550 Kbytes free RAM 1 Mbyte total RAM will usually provide sufficient free nemory if TSRs are loaded into hi gh DOS nenory. ' Avai lable nenory can be checked by typi ng CHKDSK.
- 6 Mbytes for installation on a hard disk.
- 8 Mbytes or nore additional free nenory on a hard di sk, or RAM di sk, to run. Ei ght Mbytes are required to run initially with the large equation library supplied with the package: 6 Mbytes for FoxPro temporary uork files and up to 2 Mbytes for out put files the user may sel ect. Mbre space will be requi red for output files from large user datasets. Less space will be needed if snaller equation libraries are used.
- A 1. 2- Mbyte 5.25 -inch di skette dri ve to read the BI OPAK di sk.
- A printer, capable of printing 132 or nore characters per line, to make paper copi es of output.
- An EGA or VGA moni tor makes it easi er to understand col or screens at a glance. The hi ghl ight bar cannot be seen on sone nonochrone systens.

Files Shipped with BIOPAK

The disk shi pped with BI OPAK should contain these files:

BBAT1	BI OPAK1. EXE	I NSTALL. BAT	I NSTR2
BBAT2	GETDRI VE. COM	I NSTR1	KEYPRESS. COM

BBAT3
On the TSTDATA di rectory:
LI BRARY. EXE TUTOR. DAT TUTOR. RD

Installation on a PC

We suggest these steps for installinq Bl OPAK software on a PC:

1. Make a backup copy of the Bl OPAK hi gh- density disk. Al so, bef ore proceedi ng to step 2, be sure to have a boot di sk for the computer and external copi es of the CONFIG SYS and AUTOEXEC. BAT files fromthe hard dri ve.
2. If an earlier versi on of Bl OPAK is on the PC, avoid problens by following these steps:
a. Either renove all files of the earlier version, orput them all in a di rect ory not I abel ed BI OPAK and not on the DOS path. Del ete al I BI OPAK. BAT files fromall directories on the DOS path. Od Run Design (. RD) files will not work with the new versi on of Bl OPAK.
b. Renove the BI OPAK di rectory fromthe PATH statenent in the AUTOEXEC. BAT file.
c. Renove the statements SET BIODIR=. . and SET BI OTMP= . . from the AUTOEXEC. BAT file.
3. Increase your DOS envi ronment space by at least 512 bytes above what currently works for the PC being used, or set it to 2, 056 bytes, whi chever is larger. This can be done by using a text editor or nord processor to change the SHELL command in the C: \CONFIG SYS file. Syntax of the SFELL command differs for different versi ons of DOS, so consult your DOS manual. Under DOS versi ons 3.3 and higher, this is done with a command like the foll owing:

SFELL=C: \DOS\ COMMAND. COM / P / E: 2056
This line in the CONFIGSYS file will set the envi ronment space to 2, 056 bytes.
4. Reboot the PC so the changes to the CONFIG SYS file AUTOEXEC. BAT take effect. The installation program and Bl OPAK require 500-800 bytes of free envi ronment space to run.
5. Deci de which hard drive (C : , $D_{i}, E:$, F : or G) to install the Bl OPAK systemfiles on. This will require about 6 Mbytes free space. Hard drive C : is used in these instructions, but any hard drive will do. The Install program will put BI CPAK on the di rectory naned BI OPAK on the drive sel ected. We refer to this as the BI OPAK di rectory.
6. Decide on a drive for BI OPAK to put its temporary files on when it is runni ng. These files will go on the root directory of this drive; for example, $E: \backslash$. Be sure you have permissi on to write here and that it can hol d about 8 Mbytes in order to use the Iarge Equation Library shi pped with BI OPAK. The RAM di sks are fastest.
7. Start the installation program Put the Bl OPAK diskinto a diskette drive; go to that drive (for example, A:); then type at the $A:>$ prompt: I NSTALL
8. Answer the questions posed by the install program about the locations of files. You will be informed when installation is complete or if there are probl ens.
9. The file BI OPAK BAT must be in a directory on the DOS PATH Mbve it from C: \if needed.
10. Copy the files from the TESTDATA di rectory on the Bl OPAK di sk to the di rectory the tutorials will be run from ve will use C: \TESTDATA to illustrate. Go to the C : \backslash TESTDATA di rectory and type: COPY A: \TESTDATA\ *. *
11. If you want to nodify the Li brary, decompress it in the TESTDATA di rectory (requi res about 2 Mbytes) so you can nake changes to this copy, saving the
copy in the BI OPAK di rectory. Type:
LI BRARY
This will put the Equation Li brary files (Bl OLI B?.*) in your TESTDATA di rectory. Now LI BRARY. EXE can be del eted from this di rectory.
12. If the library in your TESTDATA directory is not decompressed, the BI OLI B. EQN (equati on) file must be copi ed fromthe BI OPAK di rectory to your TESTDATA di rectory by typi ng:

COPY C: \BI OPAK BI OLI B. EQN C: \TESTDATA
to run the tutorials.
13. Check whether sufficient free DOS menory is available to run BI OPAK by using MAPMEM Type:

C: \BI OPAK MAPMEM
Free nenory is shown as, for example, "590992 free" and gi ven in bytes.
14. If about 550, 000 bytes free RAM menory is not available, uni nstall sone TSR pograns or load theminto high or extended nenory before runni ng You nay have to consult the nanual s for these prograns to do this. ' Often they are installed in the AUTOEXEC. BAT and CONFIG SYS files.

To build different AUTOEXEC. BAT and CONFIG SYS files to be used only when BI OPAK is run, save copi es of the original s; for exampl e AUTOEXEC. SAV and CONFI G SAV. The new ones could be naned AUTOEXEC. BIO and CONFIG BI O. In this case, bef ore runni ng Bl OPAK, the *. BIO files must be copi ed over AUTOEXEC. BAT and CONFIG SYS, and then the PC mist be rebooted. Use MAPMEM again to verify that enough free menory is available.

BI OPAK is now ready to run on your PC.
NOTE: You can nove BI OPAK to a different drive or di rectory by (1)
rei nstalling it, starting with step 2 above; or (2) novi ng all BI OPAK files to a new dri ve and di rectory, and changi ng the SET BI ODI R=t newpath> Ii ne near the top of every BI OPAK BAT file to point to the new BI OPAK di rectory.

Starting BIOPAK installed on a PC

Start BI OPAK in a di rectory that contains the data to be used to cal cul ate pl ant components and that will contain BI OPAK report output. As you work with BI OPAK, you will need to del ete files frominternedi ate runs. To avoid acci dental del etion of files needed for running BI OPAK, do not start BI OPAK, or store input or output files, in the BI OPAK di rectory.

If planning to log on to a network, do so before starting Bl OPAK. To start BI OPAK that is installed on the hard drive of a PC, type: BI OPAK
Instructions for, starting Bl OPAK that is installed on a network are gi ven in the section, Installation on a Network.

Verifying BIOPA K installation on a PC

Verify that BI OPAK has been installed correctly by following these steps:
Go to your TESTDATA di rectory and

- Type BI OPAK to start. BI OPAK.
- Type D to sel ect Design a Run.
- Type F to sel ect File.
- Type R to sel ect Read exi sting run design file. The Foxpro File Selection

VI ndow, comonl y used in Bl OPAK, will appear.

- Sel ect the file TUTOR. RD by highlighting it, and type <enter>
- Press 《Esc> to renove the File Menu
- Type D to sel ect Default Settings

If the screen looks similar to the one shown bel ow, especially the val ues in the highlighted fields, Bl OPAK can find its files and is apparently installed correctly. If the screen does not look like this, BI OPAK has not been installed correctly.

```
BIOPAK Design a Run Default Settings
    MMMdify or Add Default Settings
    Areal Defaults (use when not present in data)
        Fi xed Pl ot Area Units
        Prism Basal Area Factor Units
        Pl ot Slope Correction Units
Equation Key Defaults (use when not present in data) Geographi c Area Code W Seral Stage Code 0
Equation Sel ection Penalty Defaults
Maxi mum ESP level 79999
Threshol d ESP level 0 Summati on ESP level 0
Select Onl y Reassi gned Speci es? N
```


Press <Ctrl-Q> and continue to back out to the Main Menu without saving this file. Quit BIOPAK.

The installation can be checked further by comparing the files on the Bl OPAK di rectory with those shown bel ow

Installation on a Network

The instal lation descri bed here runs on the Novel I network-at our devel opment site, the Forestry Sci ences Laboratory in Corvallis, Oregon. It may have to be nodified to fit your network brand and configuration. Several of these steps must be done with a text editor or word processor that can edit flat ASCl files.

1. Make a backup copy of the Bl OPAK di sk.
2. Deci de whi ch net work server, drive, and di rectory you want to install the Bl OPAK systemfiles and the Equation Library on. There must be about 6 Mbytes free space. We refer to this as the Bl OPAK di rectory and call it

K \backslash BI OPAK in these instructions, but any drive and path will do. Users should not be able to change these files. This di rectory need not be on the search paths of potential users.
3. Use the DOS Copy or Xcopy command to copy files on the BI OPAK disk to that di rectory. For example, if reading the disk on the A drive, type:

COPY A: *.* K: \BI OPAK
COPY A: \TESTDATA\ *. * K: \BI OPAK
4. Go to the BI OPAK di rectory, then unpack BI OPAK systemfiles and the library using these commands at the DOS prompt:

BI OPAK1
LI BRARY
5. The files that match these names can now be del et ed: BBAT? I NSTR? I NSTALL. BAT LI BRARY. EXE BI OPAKI . EXE.
6. If BI OPAK will be installed on a drive other than K, then all occurrences of K : \backslash in the file BI OPAKN BAT shi pped with BI OPAK must be changed to point to the drive it will be installed on.
7. Copy BI OPAKN BAT from the BI OPAK di rectory to a net work di rectory that will be on the search path of every potential Bl OPAK user.
8. Instruct users to copy the tutorial files (TUTOR. *) in Ki \backslash Bl OPAK to a personal di rectory on which they can write. The library files (Bi OLIB?.*) - al so should be copi ed if they antici pate changing them
9. Make two changes to each PC that will be used to run BI OPAK
a. Increase the DOs. envi ronnent space by at least 512 bytes above what currently works for each PC. This can be done by using a text editor or uord processor to change the SHELL command in the C: \CONFIG SYS file. Syntax of the SHELL command differs for different versi ons of DOS, so consult your DOS manual. Under DOS versi ons 3.3 and hi gher, this is done with a command like:
SHELL=C: \DOS COMMADD. COM / P / E: 2048
This line in the CONFIG SYS file will set the envi ronnent space to 2, 048 bytes.
b. Be certain there is enough free DOS menory to run BI OPAK and, if not, free sone up, as described above in the section, Installation on a PC.

BI OPAK is now ready to run over your net work.

Starting BIOPAK on a network

Start BI OPAK in a di rectory containing data that you want to cal cul ate plant components from and that will contain BI OPAK out put. While working with Bl OPAK, del ete files from internedi ate runs. To avoid acci dental del etion of files needed for runni ng BI CPAK, do not start BI OPAK, or store input or output files, in the BI OPAK directory.

To start BI OPAK over a network, type:
Bl OPAKN E: \temp
where E: \temp is any full path, incl udi ng <dri ve>: \<path> on whi ch Bl OPAK can write its temporary files. You must have permissi on to write there. It should have a minimof $\mathbf{3}$ Mbytes of free space, or nore, depending on the size of files to be processed with BIOPAK. About 8 Mbytes will be requi red to use the large equation Iibrary shi pped with Bl OPAK. RAM dri ves are faster; network dri ves are sl ower.

Verifying BIOPAK installation on a network

Verify that BI OPAK has been installed correctly by performing the steps descríbed above under Verifying BI OPAK Installation on a PC, except start BI OPAK as j ust descri bed.

Files on the BIOPAK directory

These files will be in the BI OPAK directory after successful installation:
BATCHMAN COM
BATCHMN DOC
BI OCMP . EXE
BI OCODES
BI OLI B . DBF
BI CLIB . EQN
BI OLI B . FPT
BI OMSGS
BI OPAK . BAT*
BI OPAKN . BAT
BI OPRO . EXE
BI ORPTS . EXE
BI OSUMM
CHECK . COM
FOXSWAP . COM
I NSTALLC. BAT**
KEYPRESS. COM
LHA . EXE
LHA .HP
LHA213 . DOC
LI STR . COM
MAPMEM . COM
SD . COM
WA T . EXE

* not in net work instal lation.
** opti onal, can be del eted.
The utilities BATCHMAN COM (. BAT file enhancenent), CHECK COM LHA EXE (file compressi on), LISTR. COM (file vi ewi ng), MAPMEM COM (nap of nenory usage), SD. COM (di rectory listing) and WAIT. EXE (pause execution for n seconds) are used by BI OPAK and can be used i ndependently.

Performance Enhancement

Use of RAM disk as temporary directory
Specifying that BI OPAK put its temporary files on a RAM di sk consi derably speeds operations. This can be done when using the installation program to put BI OPAK on a hard di sk or when starting BI OPAK over a net work. There must be a minimm of 4 Mbytes free on this directory for Bl OPAK to run.

Use of smaller equation library and

The Equation Li brary shi pped with BI OPAK has about 1, 000 equati ons, incl udi ng documentation. Each time the Equation Li brary is retrieved, a copy is made in the desi gnated temporary directory. If you are norking with a complete Equation Li brary and planning to access the Li brary on a regul ar basis, it may be desi rable to create a subset of the Li brary. For example, if concerned only with tree speci es, you could save a subset of the Li brary with just tree speci es.

Many of the runs made to determine whi ch equations to use are best made with subsets of large datasets.

GETTING STARTED

Thi s chapter incl udes an outline of the maj or BI OPAK feat ures and suggestions for usi ng BI OPAK.

Section

```
Overvi ew of Feat ures
    User interface operations
        Keyboard
        Mbuse
    File sel ection wi ndows
        Sel ect an existing file
        Specify a new file
    On-line hel p system
        Designi ng a run
        Cal cul ati on of pl ant components
        Reports of pl ant components
        Equati on Iibrary and editor
        DOS shel I
    Use outsi de the U.S. Pacific Northwest
    Suggestions for Usi ng BI OPAK
        Before field sampling
        Li st speci es and components
        Locate equations to use
        List parameters and nake forns
        Fi eld sampling and data entry
        Enter new equations
        Enter data
        Making cal cul ation runs
        Desi gni ng the run
        Cal cul ate pl ant components
        Initial run eval uation
        Addi ti onal runs
        Di agnosing probl ens
            Documenting cal cul ati ons
```


Overview of Features

BI OPAK has been desi gned for cal culating and summarizing species-specific plant components for large datasets. Several pl ant components, such as bi onass, leaf area, and stem vol une, can' be cal cul ated, though we often refer only to plant component (s) or bi onass to improve readability. The package is nenu-driven to facilitate use. BI OPAK was desi gned with several maj or functions. These are accessed through the Main Menu and are described briefly in this chapter.

The relations among BIOPAK procedures and important files are shown in figure 1. You must become familiar with these relations to use BIOPAK.

Figure l--Relations between BIOPAK procedures and important files. Procedures are in ellipses; files are in boxes.

User interface operations

Keyboard--

The following keys operate as consi stently as possi ble throughout BI OPAK. Mbst exceptions are noted in the documentation for that section.

When in a menu:

Key	Function
Hot Keys:	The capitalized key in a menu sel ection is a hot key that sel ects that item
Esc>:	In nost subnenus, exits to next highest menu without doing any work. You will have a chance to save, work that might be lost.
<nter $>$:	Sel ects line or action from menu.

When in an edit or nodify wind

```
Key Function
<Ctrl-S>: Saves all changes and exits to next hi ghest nenu or wi ndow
cCtrl-Q: Cancels all changes to current record or window and exits to next
                                hi ghest menu or wi ndow
<1>: Brings up the on-line hel p system
&10>: When in the rel evant data-entry cell, di splays a list of valid
                                codes for sel ection.
<Arrons>: Mbves to adj acent character or line.
<Tab>: Moves cursor to next data-entry cell.
Shift-Tab>: Mbves cursor to previ ous data-entry cell.
Del >: Del etes a character, or entry.
<Ctrl-Del>: Del etes a line of data.
<Enter>: Sel ects code fromlist, or noves cursor to next data-entry cell.
```


Mouse--

In many cases the nouse can be used to position the cursor and sel ect menu itens; when a nouse driver is loaded before starting BI OPAK. We suggest uorking the tutorials to learn to use the nouse. Mbuse usage is not consi stent, unf ort unatel y, due to insufficient devel opment resources. In particular, use only single clicks to sel ect menu itens.

File selection windows

There are tho FoxPro File Selection Vindows; one for sel ecting an existing file, the other for naming a file that will be produced. They allow easy selection of a file, or specification of new file name, on any drive and path available to DOS. Instructions for their use with cursor keys are given here.

The following keys will hel p you nove around in the windous:

Key	Function
<Tab>:	Moves cursor to next box or fi el d, cl ockwi se Shift-Tab>: Mbves cursor to previ ous box or fi el d, countercl ockwi se <Esc>:

Select an existing file--

Follow these steps to sel ect a file (or use a nouse and double-click the opti ons) :

1. If the wrong drive is shown, nove the cursor to the Driveletter box, press <Enter> (a list of all availabe drives will be shown), highlight the drive to be used, and sel ect it by pressing <Enter>.
2. If the wrong di rectory is shown, <Tab> to'the Di rectory box, press <Enter> (a list of all the available directories will be shown), highlight the di rectory to be used, and sel ect it by pressing <Enter>. Or, <Tab> to the File display box on the left side, hi ghl ight the desi red di rectory and press <Enter>. The synbol [...] indi cates the parent di rectory to the one shown. This step can be repeated to nove up and down di rectory trees until the desired directory is reached.
3. When the desi red drive and di rectory are shown, hi ghlight the desired file nane and press <Enter> (or sel ect <Open>) to sel ect it.

The wi ndow used for sel ection of files looks simiar to this:
BI OPAK Design a Run File

D: \BIOPAK $\backslash T E S T D A T A \backslash U N T I T L E D . R D$

Specify a new file--

To specify a new file name, follow steps 1 and 2, above, as needed. Then <Tab> to the bottomline of the File Sel ection Vindow, enter a new file nane, <Tab> to the «Save»box, and press <Enter>. The file that will be saved is the one shown in the box at the bottom of the window

The wi ndow used to nane a file, will look similar to this:

On-line help system

A maj or feat ure of BI OPAK is its on-I ine hel p system In nost wi ndows and menus, <Fl> will di spl ay a hel p window that is sensitive to the context. There is al so a reference section where users can find definitions of terns and descriptions of files.

The Help Topics List is organized as follous:

1. BI OPAK Mai n Menu: Li st of Mai n Menu itens. Displayed when <Fl> is used from the Main Menu, or Cal cul ate Pl ant Components, Generate Reports, and View Reports Windous. Sel ection of an itemfrom the list will display contents for that' item
2. Before You Begin: List of topics covering infornation about Bl OPAK. A detailed expl anation about how to use the FoxPro Hel p Systemis incl uded.
3. Run Design Menu Itens: Li st of Desi gn a Run Menu itens. Text inclüdes description of each nenu item
4. Li brary editor Menu Itens: List of Library Editor Menu itens.' Text incl udes description of each menu item
5. Run Desi gn Interfaces: List of Design a Run windows and menus. Pressi ng <Fl> exhi bits hel p text when in the rel evant window or menu.
6. Li brary Editor Interfaces: List of Li brary Editor windows and menus. Pressing <Fl> di spl ays hel p text when in the rel evant wi ndow or menu.
7. Reference: List of topics that covers terns, concepts, and files referred to in ot her BI OPAK Hel p wi ndows. Al lopics are incl uded in at least one "See Al so" of another Hel p wi ndow

In BI OPAK wi ndows and nenus, the Help Window that appears I ooks si milar to this:

<Ctrl-S> Save/Exit <Ctrl-Q>Cancel/Exit D: \BIOPAK \TESTDATA\UNTITLED.RD <F10> Units \& Codes <Fl> Hel p I

Sel ections in the Hel p Window
Sel ection Function
<< Topi cs >> Displays a completelist of topics. User can scroll through Hel p Topics List, and sel ect fromit.
< Next > Shows contents of next help topic in iist.
< Previ ous > Shows contents of previ ous help topic in list.
< Look Up > Al ous specification of word or subject to find in Hel p Topics List.
See Al so \| in ays a list of rel ated topics. User can choose fromthe list and vi ew the contents.

Designing a run

You can Desi gn a Run (see fig. 1) by specifying the default settings, the format of input data, the pl ant components to be cal cul ated, and how BIOPAK is to sel ect equations from a library.

Two nethods of sel ecting equations are available: (1) BI OPAK can sel ect the most appropriate equations for indi vidual plants based on certain criteria, or (2) BI OPAK al I ous you to specify the equation(s) to be used. The Iatter met hod, cal led Equation Reassi gnnent, nost rel iably sel ects the nost appropriate equations and takes the least computer time. This can be done
di rectly fromthe Reassi gnnents Add/ Modify Vindow of Desi gn a Run.
Mbst often, a conbi nation of both nethods will best facilitate the users objectives. If uncertain about the nost appropriate equation, compare results for various reassi gnment specifications with a small subset of the data.

The design specifications for a run are put in a Run Design File (*. RD), used to direct the cal culation of components (see fig. 1). You can request a Run Design Report (*.RDR) of these specifications.

Calculation of plant components

Pl ant components are cal cul ated in a separate step from the Run Design (see fig. 1). You specify the Input Data File (*. DAT) the Run Design File (*. RD), and the Equation List File (*. EQN) to be used. An Internedi ate Bi nary File (*.I BF) is produced. To hel p diagnose problens with a run, sel ect reports that summarize the equations used (*. USE), list all equations used (*. DET), and show errors detected for each plant component requested (*.ERR).

Reports of plant components

Reports may be generated as needed from the Internedi ate Bi nary File (see fig. 1). Component data for indi vidual plants, and pl ot and stand totals, are available in reports fornatted for people (*.RPT) and as machi ne-readable reports (*.IND, *.PLT, and *.STA) for anal ysis by other software. BI OPAK does not support printing so files must be printed outside the program

Output can be requested in either English or metric units. The specific units are listed in Appendi x : Units.

Equation library and editor

BI OPAK cones with an Equation Li brary of about 1,000 equations. The equations are primarily from the Pacific Northwest regi on of North Anerica. A Library Editor (see fig. 1) allows you to add and del ete equations from this Library, or to make an entirel y new Equation Li brary. Users from outside of this regi on should make libraries for their onn regi on or subregi ons. You must make an Equation List File (*. EQN) froma Li brary by using the Li brary Editor. This file is used in cal culations (see fig. 1).

Bl OPAK natches species in the data with equations in the Li brary by using a si x-character (naxi mum) Speci es code. We used the speci es codes for the Pacific Northwest standardized by Garrison and others (1976) for the equation in the Li brary distributed with BI OPAK. Mbst codes are only four letters long; the first tuo letters represent the first two letters of the genus, and the Iast two letters represent the first two letters of the species.

Many plant component equations have been compiled on paper (for example, Gholz and others 1979, Standi sh and others 1985, Stanek and State 1978, Tritton and Hornbeck 1982), but this Equation Library apparently is the first published incorporation of such equations into a computer database.

DOS shell

To execute sone DOS commands without exiting BI OPAK, go to the DOS Shel I. Return to the di rectory BI OPAK was executed frombef ore returning to the program To return to Bl OPAK, type EXI, and press \&Enter>.

Use outside the Northwest
BI OPAK can be used in other regions. Equations for plants in a new regi on must be entered into a new or existing library by using the Li brary Editor in BI OPAK New Geographi c Area and Seral Stage codes must be entered when needed as described in Appendix: Customizing BI OPAK.

Suggestions for Using BIOPAK

In this section we recomend procedures that increase the efficiency and accuracy of component estimates. They may have to be adapted to your own ci rcunst ances.

Before field sampling

List species and components--
First, make a list of the plant species and their components that Bl OPAK is to estimate. This may take preliminary field work.

Locate equations to use--
Second, deci de which equations will be used. Use the Li brary Editor to see what equations are al ready available in the Equation Library (shi pped with BI OPAK). An Equation Li brary can be searched by Speci es and Pl ant Component codes as described in Reference: Li brary Editor. You may decide on a gi ven equation because it requires easier neasurenents (for example, DBH) than an al ternative equation (for example, hei ght and form factor). Choose equations carefully. Comparisons of estimates by different equations may hel pin sel ecting the appropriate one.

If no available equations fit your needs, several options exist:

1. You can search the literature and contact local botanists, foresters, -and ecol ogists to see if other suitable equations exist; this could start with references in this paper.
2. You can sum the results of several equations for several other components to estimate a desi red component. For example, stembi onass and foliage bi onass could be sumned to estinate total aboveground bi omass for a shrub. First, however, see if Bl OPAK will choose an acceptable summation aut onatically as described in Appendi x : Sel ecting Equations and Summations: BI OPAK Sel ects. Al ter nativel y, Bl OPAK can be instructed to use specific equations as described in Appendi x : Sel ecting Equations and Summations: User Sel ects.
3. BI OPAK can use an equation for a different geographic area, seral stage, or speci es as described in Appendi x: Sel ecting Equations: User Selects. For example, an equation for Vaccinium al askaense could be used for Vaccinium ovalifolium or an equation for Libocedrus decurrens Torr. in California could be used for this speci es al ong the west side of the Cascade Range in Oregon.
4. You can build equations by measuring (and usually harvesting) plants of a wide range of sizes in a specific area. Al endag (1980), Pi eper (1978), Standi sh and others (1985); Valentine and others (1984), and Wharton and Cuni a (1987) descri be nethods for doing this.

List parameters and make forms--

With the equations to be used, nake a list of the field measurenents required to obtain the parameters for each speci es and plant component. Potential measurenent parameters and units are listed in Reference: I nput Data File: Parameters. Then design field forns (on paper or a field data recorder) to facilitate recording these neasurenents, gi ven the sampling system chosen. The
forns should be desi gned so a dataset can be created easily as described in Reference: Input Data File.

Field sampling and data entry

Field sampling can now be done. If feasi ble, record all paraneters in separate col ums on your field sheets. For example, keep DBA and DBH in separate col ums.

Enter new equations--

Enter any equations found in other sources, or that you made yourself, into the Equation Li brary to be used, as described in Reference: Library Editor. Then make an Equation List File for use in computations. This can be done before fiel d sampling.

Enter data--

Enter field data, observing the instructions in Ref erence: Input Data File. In general, each input record (1) may not exceed 255 characters, (2) must occupy only one Iine in the Input Data File, and (3) mist have fixed-Iength data fiel ds (f or example, DBH is al ways in col ums 23-28).

calculation

runs
It is hel pf ul to gi ve each run a nane, for example FALLCRK1 and use this as the root for al l associ ated out put (for example, FALLCRK1. RD FALLCRKI. USE, FALLCRK . I BF, and FALLCRK . RPT).

Plan to use your whole dataset in the initial run. If it is so large that execution times or file sizes prohibit this, use a subset that includes each species and the full range of sizes within each species.

Designing the run--
Create a Run Design File incl udi ng the Def ault Settings, Data Input Format, Components to Output, and any Equation Reassi gnnents needed (to use summations and to use an equation for one species in place of another species). This process is described in Peference pesign a Rn

At this point you should know all the species in the Input Data File to be used, the components to be cal culated for each, and the equations likel y to be used. You will probably make several runs.

Calculate plant- components--
After sel ecting the files to be used in the run, request the Sumarized Equation Use Report (*. USE) on the Cal culate Pl ant Components Window then sel ect Go.

Choose Generate Reports fromthe Main Menu and make all three of the Reports for Peopl e (*. RPT) : I ndi vi dual Pl ant Report, Pl ot Summary Report, and Stand Summary Report, then sel ect Go.

Initial run evaluation--

Examine the Summarized Equation Use Report (*. USE). Were the appropriate equations used? Did the Equation Reassi gnments you created function as
i ntended? Revi ew the Indi vi dual Pl ant Report in Reports for People (*. RPT). Do the esti mates seem reasonable? Are the detected errors acceptable? Lastly, check the esti mates on the Pl ot Summary and Stand Summary Reports in Reports for People to see if they are reasonable. Information in these reports is described in Reference: Reports and Other Output.

If results seem acceptable, use this as the final run and generate the reports to be used for further anal yses.

Additional runs--

If results are unacceptable, determine what caused the problens and design a new run to correct them Problens often can be corrected by nodifying and addi ng equation reassi gnments and addi ng nore appropriate equations to the Library. For example, you nay choose to avoid an overextrapol ation or underextrapol ation by reassigning large or small plants to an equation based on large or small plants, respectively.

Diagnosing problems--

If you need to determine the specific equation (or summation) used for a given cal culation, make another run and request a Detailed Equation Use Report
(*.DET). This report is the largest and may require using a subset of the data. The Error Report (*.ERR) al so may be hel pf ul because it shous error codes, Original Equation Request, and Equation Sel ection Penalty (ESP) for each val ue cal cul ated. Error nessages, other difficulties and suggested fixes are in Appendi x--Troubl eshooting.

Now make another trial run and eval uate the results.

Documenting calculations

Keep copi es of the Run Desi gn File (*.RD), Summarized Equation Use Report (*. USE), Equation Li brary (*. DBF), as well as the Input Data File, used for i mportant computations (for example, as FALLCRK1. RD FALLCRK1. USE and FALLCRK. DBF). These will serve as documentation of the equations used to generate your results. If results ever need to be repeated, compared, or defended, this inf ormation will be val uable. Al so keep a copy of the Internedi ate Bi nary File (*.IBF) for a short period to make other reports.

REFERENCE

This chapter covers the requirenents for the input file, the feat ures and basi cs in each BI OPAK nodul e, and a description of reports.

Section

```
25 Input Data File
25 Requi red organi zation of the data
26 Data i nput fornat
26 Site and Pl ant Identification codes
27 Paraneters
29 Desi gn a Run
30 Run Desi gn Menu
31 File Menu
32 Default Settings
34 Data I nput Fornat
35 Components to Output
37 Equati on Reassi gnments
4 1 ~ L i ~ b r a r y ~ E d i t o r ~
42 Equati on Keys
        Requirenents, assumptions and possibilities for BI OPAK equations
47 Mbdifying and creating equation Iibraries
47 Equati on Summary VIV ndow
    Edi t Li brary Menu
51 Editing an equation
55 Cal cul ate Pl ant Components
56 Title
56 Files to be used
56 Di agnostic Reports
56 Go
57 Generate Reports
58 Internedi ate Bi nary File
58 Reports to be generated
58 Output units
58 Go
59 Vi ew Reports
60 Changing a file nane
60 Vi ewing the report
60 Reports and files to be vi ewed
60 Usi ng LI STR
6 1 ~ R e p o r t s ~ a n d ~ O t h e r ~ O u t p u t
61 Run Desi gn Report
61 Di agnostic Reports
    Internedi ate Bi nary File (*.I BF)
    64 Reports for People (*.RPT)
    67 Machi ne-Readabl e Reports
```


Input Data File

Section

Requi red organi zation of the data
Data input format
Site and PI ant Identification codes
Speci es code
Seral Stage and Geographic Area codes Li f ef orm code
Paraneters

BI OPAK reads input data (for example, variables such as speci es codes, plant identifier, and val ues for DBH) from a data file during execution. Specify the input data variables available to BI OPAK by defining the Data Input Fornat when using Design a Run. The variables, and valid units, that nay be used by Bl OPAK fromthe Input Data File are shown in Appendi x : Codes and Appendix: Units. The Parameter codes listed with the units are the codes used in the Data Input Fornat VIndow of Design a Run and in the Equation Library; these codes are not necessary in the Input Data File.

Required organization of the data

The order of input records is important in obtaining correct totals and averages in reports. Specifically, in a given Input Data File, all pl ot identifiers in each stand must be contiguous, and all stand identifiers must be contiguous. That is, all data froma pl ot must be clustered together', and all data froma stand must be cl ustered together. Otherwise, Pl ot Summary and Stand Summary Reports will gi ve erroneous results.

To be read directly by BI OPAK, the Input Data File must be organized as speci fied bel owe

1. Each input record must occupy only one line of the file and be no more than 255 characters I ong.
2. Fi xed field-length records. Each data point, or variable, must al nays occupy the same col ums. In other words, if the species code is in col ums I-6 of record 1, then species must be in col ums 1-6 for all other records.
3. Spaces, commas, or other data delimiters are not necessary. If they are used, do not incl ude them when counting the field length for the variables.
4. No tho variables should occupy the same field. Bl OPAK will still process the data, but problens may occur as described in Parameters.

A few lines from a sample dat aset whi ch meets BI OPAK requi renents, are shown bel ow The col um headi ngs are incl uded for interpretation and are not part of the data file.

Data input format

The Data Input Fornat Vindow of Design a Run is where the Input Data File specifications are made. A detailed description of this can be found in Reference: Desi gn a Run.

Site and Plant Identification codes

To request Pl ot or Stand Summary reports, Pl ot or St and must be incl uded in the I nput Data File for each pl ant so BI OPAK will function correctly as described bel ow

Date, Locale, and Plant identifiers provide additional ways to identify input records. They are not used in the execution of BI OPAK but do appear in reports if included in the Data Input Format.

The Site and Plant Identification codes are incl uded in the output reports and may be used for purposes ot her than what thei r nanes $i m p l y$. Thi s can be facilitated by renaming them when using Design a Run. For example, Date, Locale, Stand, Pl ot and Plant id nay be rel abel ed, respectivel y: Year, County, Tract, Pl ot, Tree \#, or Month, Basi n, Pl ot, Subpl ot, Pl ant; or Date, Stand, Pl ot, M cropl t, Treat nent.

Species code--

This code may be up to six characters long. It must match the Species code of the desired equation(s) in the Library if BI OPAK is to find the equation(s) without a reassi gnnent (see Appendi x: Desi gn a Run). Most Speci es codes appearing in the supplied Equation Library conform to Garrison and others (1976). Exceptions incl ude codes for bryophyte speci es and for equations based on data from several species. See Appendix: Codes for a list of the Species codes incl uded in the BI OPAK Equation Li brary.

Seral Stage and Geographic Area codes--

These codes can be in the Input Data File, or they can be set constant when using Design a Run. BI OPAK uses them when it tries to choose equations that nost closel y match the envi ronnental characteristics of the input data. The Geographic Area and the Seral Stage codes crudel y classify the grouth envi ronnent(s) of plants harvested to build equations and of plants in the Input Data File.

When a Geographic Area or Seral Stage code is not incl uded in the Input Data File, or when the input val ue is a blank, the default val ue provided by you in the Default Settings of Design a Run will be associ ated with input records.

For the currently recogni zed Geographic Area and Seral Stage codes, see the Appendi x: Codes.

Lifeform code--

BI OPAK must associ ate a lifeform code with each input record processed.
Lifef orm codes affect equation sel ection, the matching of equation reassi gnments to input records, the components cal culated for the current input record, and the commity stratum within which output is listed in reports. See Appendix: Codes for alist of valid Lifeform codes.

A plant lifeform variable should be included in the Data Input Fornat when you Design a Run if these data are in the Input Data File. BI OPAK will try to read a lifeform code from the input record if this variable is included in the fornat. If not incl uded in the format, or if the lifeform code val ue of the input record is a blank, lifeform substitution procedures described in Appendi x : Lifef orm are used to assign a lifeformto the plant. If the species occurs in an Equation Reassignment, or in the Li brary used in the run, BI OPAK will try to find the taxonomic lifeform from these sources; In general, you need not be concerned if lifeform does not cone in from the Input Data file.

The coppice lifeformis recogni zed for trees and shrubs because stump sprouts often have a different grouth form than plants grown from seed.

Parameters

Paraneters in the Input Data File are used as predictor variables in pl ant component prediction equations. The following information on indi vidual plants, called parameters in this nanual, can be used by Bl OPAK.

Code S	St andard netri c units	Descri ption
Bl 0	g	Bi omass
Cl R		Ci rcunf erence
COV	\%	Canopy cover
CR	\%	Crown ratio
DBA	cm	Di aneter at or near base
DBH	cm	Di aneter at breast hei ght
FC	\%	Form cl ass
HT	cm	Hei ght
LEN	cm	Length (for example, al ong stem projected crown length)
NP	NA	Number of plants
NUM	NA	Number (f or example, of fronds, stens, or flowers)
*PLOTAREA	m2	Fi xed-pl ot area
*PRI SMFAC	$\mathrm{m} 2 / \mathrm{ha}$	Prism basal area factor
*PLTSLOPE	\%	Pl ot slope correction
SAP	cm	Sapwood radi al thi ckness
SPA	cm2	Sapwood cross-sectional area
VOL	dm3	Vol une (f or example, of bole, or crown)
WD		Width (for example, proj ected crown width)

In the Equation Li brary, Parameter codes represent the independent variables used to cal culate the plant components, with the exeception that codes marked
by asterisks cannot be used in equations and are only rel event for plots. Other netric and English Units can be input as listed in Appendix: Units. These are converted to standard netric units for cal culations.

The types of measurenents can be different for different species. Input data, for example, nay contai n basal di aneters for sone shrubs, cover for sone herbs, number of fronds and nean frond length for a fern, and diameter, hei ght and crown ratio for a tree.

Nb tuo parameters should occupy the sane location in the Input Data File used with BI OPAK If, for example, the neasurenents for DBH and DBA were recorded in the same col ums in the input data records, a serious problem nay occur. For example, there are speci es in the Li brary having some equations usi ng DBA and others using DBH, Acer macrophvl um (ACMA) is one. If the collected data are for the DBH of ACMA, and if both DBA and DBH are specified as being in the same data field, when BI OPAK encounters equations that use DBA, it nay use these thi nking that DBA was a neasured parameter. BI OPAK will then use the DBH val ues in your Input Data File as DBA val ues in its calculations. This can be handl ed best by modifying the Input Data File with a text editor so that no two parameters occupy the same data field.

It is possibe, though usually not recommended, to specify DBA as being in the sane location as DBH in the Data Input Fornat of Design a Run. This can be done in either of two ways:

1. Use the Reassi snments Add/ Modify Vindow of Desi gn a Run to sel ect equations fromthe Li brary which use the specific paraneter you neasured, or,
2. Create a new Equation Li brary for the Input Data File, in which you del ete all equations using parameters not neasured. In other words, if you neasured the DBH of THPL, del ete all equations for THPL havi ng DBA as a paraneter. If you measured the DBA of ACMA, del ete all equations with DBH as a parameter. Then, save the Equation Li brary as a different file name.

If you will measure cover or measure one pl ant to represent ot hers of the same size see Ref erence: library Editor: Requirements, assumptions and possibilities for BI OPAK equations for the special way BI OPAK handl es pl ant cover and number of pl ants.

Design a Run

Design a run Menu
edit equation Library
Calculate plant components
Generate reports
View reports or data
goto dos Shell
Quit

Section
30 Run Desi gn Menu
30 File
30 Default settings
30 Data input format
30 Components to output
30 Reassi gnments
31 Exit run desi gn
31 File Menu
31 Read exi sting run design file
31 Create new run design file
32 Save run design file
32 Run desi gn report
32 Default Settings
33 Areal def aul ts
33 Equation Key def aults
33 Equation Sel ection Penal ty def aul ts
33 Sel ect onl y, reassi gned speci es
34 Data Input Fornat
35 Components to Output
37 Equati on Reassi gnnents
37 Reassi gnments Summary Wis ndow
38 Reassi gnments Add/ Mbdify Wíndow
39 Criteria
40 Substitution keys
40 The Prinary Li fef orm Def aul \mathbf{t}

In this section of BI OPAK you specify mach of the information used in a component cal culation run. You produce a Run Design File (*. RD) that contains nodifications of def aul t settings, the format of the Input Data File, the plant components to be cal cul ated, and any Equation Reassignments. The Run Design File is used when cal culating plant components. This 'file may be saved for use in further runs.

To start this process, sel ect:
Design a run at the Main Menu.
A Run Design Menu will be di spl ayed. After using any procedure listed, the program will autonatically return to this menu after exiting from that procedure.

BI OPAK Desi gn a Run

File	Run Desi gn Menu
Default settings	
data Input fornat	
Components to output	
Reassi gnnents	
Exit run desi gn	

D: \BI OPAK TESTDATA\ UNTI TLED. RD

Run Design Menu

This section of the nanual provi des bri ef descriptions of the choi ces on the Run Desi gn Menu. The following sections cover these menu choi ces in more depth.

Fife--

Thi s sel ection will display a File Menu. Use this to create, read in, or save a Run Design File (with extensi on . RD). Sel ecting run Design report will create an easily read report, with label ed col ums, fromthe current Run Desi gn File (with extensi on . RDR).

Default settings--

This sel ection will display a Default Settings Vindow Fromthis window you can edit α vi ew Areal defaults (pl ot size and slope); Equation Sel ection Penalty (ESP) def aults (Maxi mum Threshol d, and Sumnation ESP); Equati on Key defaults (Geographic Area and Seral Stage codes); and "sel ect only reassi gned speci es?" opti on.

Data input format--

This sel ection will display a Data Input Fornat ${ }^{W}$ ndow Fromthis wing you can edit or view specifications for input record variables and thei r format, variable label s, and associ ated missing data indicators.

Components to output--

The Components to at put Window al lous you to edit or vi ew the sel ection of pl ant components to be cal cul ated for each vegetation stratum (trees, shrubs, herbs, and nosses).

Reassignments--

Thi s sel ection will di spl ay the_Reassiqnments_Summary V'Indow This wi ndow allows you to view current equation reassi gnments. From here the Reassi qnments Add/Modify V ndow can be accessed, thereby allowing you to add or edit reassi gnments.

Exit run design--

- Exits to the Main Menu. If changes have been- made to the current Run Design File, you will be asked Do you wart to qit withat saving? Y/N? To save the changes to the Run Design File, go back and select File. When the File Menu appears, sel ect Save run design file. Now, the file nane can be either changed, or overwritten.

File Menu

Sel ect File and a new nenu will appear with the following choi ces:

- Read existing run design file
- Create new run design file
- Save run design file
- run Design report

Each time the Design a Run nodule is entered, you are starting with a new Run Desi gn File (UNTI TLED. RD); empty, except for a few default settings. It therefore is not necessary to create a newfile at this time. When additions and changes have been made to the Run Design File, Save the file and name it. Al BI OPAK Run Design Files must have an . RD extensi on.

D: \BIOPAK\TESTDATA $\backslash U N T I T L E D . R D$

Read existing run design file--
To modify an existing Run Design File, select Read existing run design file. A File Sel ection Window will appear. With tabs or arrows, nove the cursor to the target file name and press <Enter>. The program will return to the File Menu, and the Run Design File you sel ected will appear as the current file in the bottomleft corner of the screen. Press 〈ESC> to get out of the File Menu.

Create new run design file--

To create another . RD File, make this sel ection, and another new file, UNTI TLED. RD will be available for editing. If changes had been made previously to the UNTI TLED. RD file, which was created when openi ng the Design a Run nodule, but those changes were not saved, you will be warned that the file has not been saved. Press <Esc> to get out of the File Menu.

Save run design file--
To save the changes previ ously made to the Run Design File, sel ect Save run design file. A File Sel ection Window will appear to prompt you to nane the file. It will be given the extension.RD. Press <Esc> to renove the File Menu.

NOTE: Be sure the file is being saved where it should to be saved. If you want to change the location where the file will be saved, sectuingtated Overview of Features: File Selection Windows.

Run design report--

To save the Run Design File in a report format, with titles and col um headi ngs, sel ect run Design report. A File Sel ection Window will appear to prompt you to nane the file. It will be given the extension. RDR Press <Esc> to get out of the File Menu. (To view the Run Design Report, go to View reports in the Main Menu.)

Often, you will want to nodify an existing .RD File to make a new one and save it bef ore exiting.

Default Settings

When Default settings is selected, the current BI OPAK settings are di splayed in reversed-video fields in the Default settings window They may be changed by tabbing to the desired field and typing over the information. While in the rel evant field, pressing <Fl0> will produce a list of codes and units from which you can make a selection. See Appendix: Colsfor a list of valid codes.

Areal defaults--

These defaults are used if pl ot area and slope are not present in the Input Data File. Pl ot area and sl ope are requi red for Bl OPAK to execute areal cal culations. If pl ot area and slope were not recorded in the Input Data File, and you intend to request areal cal cul ations or areal-based reports, incl ude them here. User may specify either Fi xed Pl ot Area or Prism Basal Area Factor, but not both.
Fixed Pl ot Area: Should be specified if the sample pl ots were of a fixed area (that is, if plants uere sampled from within a given area), and either there are some missing data, or the plot area is not present in the Input Data File. May be up to ei ght characters long, incl udi ng the deci mal.
Prism Basal Area Factor: Should be specified if data in Input Data File are from variable radi us pl ots (that is, if the plants were sampl ed by using a prism basal area factor). May be up to six characters long, incl udi ng the deci mal.
Pl ot Sl ope Correction: Even if the slope of the test plots were zero, pl ot slope is still required for BI OPAK to do areal cal culations. May be up to six char acters long, incl udi ng the deci mal.

Equation Key defaults--

These def aults are used if the codes are not in the Input Data File. For a record to be consi dered compl ete, codes for Geographic Area and Seral Stage are required. If these codes are not included in the Input Data File, they must be specified here.
Geographic Area default: Code assi gned when Geographic Area is not gi ven in the input record. The accept able codes are shown when pressing $<10>$. If an invalid code is entered, an error nessage will appear.
Seral Staqe default: Code assi gned when Seral Stage is not given in the input record. The acceptable codes are shown when pressing $\& 10>$. If an invalid code is entered, an error message will appear.

Equation Selection Penalty defaults--

These settings are required. Without them BI OPAK cannot sel ect equations from the Li brary or perform cal culations. User must specify a value for each of the three Equati on Sel ection Penal ties (ESPs). The upper range of the ESP may be nodified by you as described in Appendi x : Customizing BI OPAK (the al lowable upper range will al ways be the "NO VALUE CALCULATED' val ue specified by you in BI OCODES, minus one). The upper range for ESPs in BI OPAK, as shi pped, is 79999. ESPs are di scussed under Appendix: Equation Sel ection Penal ties. Maxi mum Equation Sel ection Penal ty: Maxi mum ESP val ue that a sel ected equation nay have (r ange: I-79999). Def aul $\mathbf{t}=$ "79999"
Threshol d Equati on Sel ection Penal ty: ESP val ue at or bel ow which the program search for a better equation is terminated (range: 0-79999). Default = "0" Sumnation Equation Sel ection Penal ty: ESP val ue above which a sumnation will be attempted (range: 0.79999). Default = "0"

Select only reassigned species--

Setting the sel ect speci es option instructs BI OPAK whether to process only those speci es in the data file that occur in an equation reassignnent. This is especially usef ul if there are nany input records-and this is a second run after reassi gnnents were done.
Sel ect Only Reassi gned Species?: Press Enter> to toggle the Yes/ No sel ection
$(Y / N) . \quad$ Default $=" N$ ".

Keys to use when editing:
Key Function

<1>	Hel p	
¢FIO:	Displ ays list of valid codes and units	
<Tab>	Moves cursor to next cell in row	
Shft-Tab>:	Mbves cursor to previ ous cell in row	
$<$ Ri ght Arrows:	Mbves cursor to next character	
<eft Arrows:	Moves cursor to previ ous character	
¢Del ete>:	Del etes a character or entry	
<Ctrl-Q>	Quits without saving and exits to the	Run Desi gn Menu
$\langle\mathrm{Ctrl}$-S>	Saves changes and exits to Run Design	Menu

Data Input Format

In this section of Design a Run, you specify the fornat of the input data. No cal cul ations can be executed if this step is omitted. Al data for an indi vidual record must occur in a single line of the input file. The naximm length for each record is 255 characters. Position and field width must be set for each variable to be read. The number of deci nal digits is ignored when set for integer data types. See Reference: Input Data File for more details about input data requi renents.

When sel ected from the Mai n Menu, a table of variables currently specified for input is di spl ayed in the Data Input Fornat window Press <PgDn>, 〈PgUp> or arrow keys to see the rest of the variables.

For each variable in your dataset (Input Data File), nost of the following entries are requi red:
Variable Nane: The first five nanes can be changed. These are used in headi ngs of sone reports.
Vari abl e Label / Description: These cannot be changed.
Units: Only the variabl es from Bl OMASS to PLOT SLOPE have units associ at ed with them (except NP and NMM. When in the units col um, \&10> di splays a list of valid units to sel ect from
Data Type: Requi red for variables lo-27 onl y (BI OMASS- PLOTSLOPE). I = integer, $F=$ floating point (real) and $E=$ exponential fornat. Other variables are al phanumeric (A).
Position (requi red): The first colum position of this fieldin an input record.
Field Length (requi red): Nunber of character positions. The naxi mum field width is 6 characters for Species, Prism Basal Area Factor, and Pl ot Sl ope Correction; 8 characters for Date, Locale, Stand, Pl ot ID, Pl ant ID, and Fixed Pl ot Area; and 10 characters for all others.
Deci nal Pl aces: Number of deci mal digits in an I, F, or E datatype. Mssing Data Indicator: A string which, when it occurs in an input record, signifies a missing datumfor this variable (usually a blank or ".").

Keys to use when editing:
Key Function

Components to Output

You can specify the components to be cal cul ated, up to ei ght. Though only ei ght Component codes can be output for any particular Bl OPAK run, nore components can be cal culated in additional runs. Note that the strata codes used by this procedure are not equi val ent to lifeform codes, but instead represent groups of lifeforns, or comminity strata.

The currently defined Component codes are listed with definitions in Appendix: Codes. Users may expand this list as described in Appendix: Customizing BIOPAK. Sone of these codes are included to facilitate future addition of equations to the Li brary, but there are no equations in the Li brary shi pped with BI OPAK that cal cul ate them

If Components to output is chosen fromthe Run Design Menu, a table of the current component sel ections (if any) is di splayed. You can modify this table
by doing the following：
1．Move the cursor to the rel evant cell and del ete or add components and strata．
2．Press 〈Ctrl－S〉 to save and exit，or 〈Ctrl－Q〉 to cancel changes and exit．
There are two ways to add components：
1．Type the Component codes di rectly on the screen．To do this：
a．Mbve cursor to a blank line．
b．Type appropriate code．
c．Press＜Tab＞to tab over to the right to specify the strata，OR
2．Sel ect them from the list of components as follous：
a．Move cursor to a blank line．
b．Press 4 F10＞for a list of Component codes．Mbe up and down by using arrow keys or nouse．
c．Move highlight bar to the appropriate component．Sel ect by pressing ＜Enter＞．The programwill then return to the Components to Output Vindow The sel ected component will have been entered under the headi ng code．

BI OPAK Design a Run Components to Output
Components to be Cal cul at ed for Sel ected Vegetation Strata－ Code Definition of Pl ant Component Code

1 BAT Bi onass，aboveground，tot al
Y N N N
2
3
4
5
6
7
8
Strata Codes
T－Trees
S－Shrubs，Coppice
H－Herbs，Grasses，Sedges
M－Mosses，Lichens，Bryophytes
＜Ctrl－S＞Save／Exit＜Ctrl－Del＞Del ete Li ne＜Ctrl－Q Cancel／Exit D：\BI OPAK TESTDATA UNTI TLED．RD＜FI O＞Component Codes＜FI＞Hel p

For each component sel ected，specify that it be computed either for speci es of all plant commity strata，or only for species of a particular stratum To specify that a strat um be sel ected，enter＂Y，＂for yes．．To indi cate that a stratum not be sel ected，enter＂ N^{\prime}（＂N＇is the default）．

Keys to use when editing:

	Function
- ${ }_{\text {Fl }}$	Hel p
<F10> :	Di spl ays list of valid codes
<Enter>:	Sel ects from pop-up Iist of Component codes
<Tab>:	Mbves cursor to next cell in row
Shft-Tab>:	Moves cursor to previ ous cell in row
<RightArrow>:	Moves cursor to next character
<LeftArrow>	Mbves cursor to previ ous character
<upArrows:	Moves cursor up rous
CDAArrows:	Moves cursor down rous
-Del et e>:	Del etes a character
<Ctrl - Del >:	Del etes a li ne
<Ctrl-Q:	Quits without saving and exits to the Run Design Menu.
$\langle\mathrm{Ctrl}$-S>	Saves changes and exits to Run Desi gn Menu.

Equation Reassignments

This section of the Design a Run nodule allous you to specify Equation Reassi gnments (described in detail under Appendix: Sel ecting Equations and Summations: User Sel ects) incl uding specific summations and Primary Lifeform Default codes. A Reassignnent is executed when the Criteria matches the Original Equation Request, as described in Appendix: Sel ecting Equations and Summations.

Through use of the Local Equation Number for an indi vidual equation in the Li brary, you can preci sel y identify a substitute equation. To use this technique, obtain the correct Local Equation Number from the Equation Library. Thi s is described under Appendix: Sel ecting Equations and Summations: User Sel ects Equations and Summations: Reassigning Equations.

It is possible to sel ect equations di rectly from the Equation Library as descri bed in Reassi qnments Add/ Modifv Window

Reassignments Summary Window--
When Reassi gnments is sel ected from the Run Desi gn Menu, a Reassi gnments Summary Vindow appears.

BI OPAK Desi gn a Run Reassi gnments

Reassi gnments Summary

Reassi gnnents that were previ ously specified are shown. The infornation shown on the screen nay incl ude the Speci es, Li fef orm Pl ant Component, Geographic Area, Ser al Stage, and Parameter codes and ranges, the Prinary Lifeform Defaul t, and the Number of Substitutions.

The full Reassi gnnents can be vi ewed and nodified, and new Reassi gnments can be added in the Reassi gnments Add/ Modifv VIndow To vi ew or nodify an exi sting reassi gnnent, highlight it and press 《Enter>. To add a Reassignment, nove the cursor to the blank line at the top of this window and press \& Enter>. These actions bring you to the Reassi gnments Add/Mbdifv Vindow

Reassignments Add/Modify Window--

This window shows the Reassi gnment Criteria, Substitutions and Prinary Lifeform Default. Edit by noving the cursor to the rel evant cell and typing in the new data. Criteria, Substitutions and Prinary Lifeform Def ault are di scussed bel ow When the nodifications are complete, press <Ctrl-S> to save the changes and return to the Reassi gnment Summarv Vindow or <Ctrl-Q> to cancel changes.

<Ctrl-S> Save/Exit <Ctrl-Del> Del ete Line <Ctrl-Q> Cancel/Exit D. \...\TESTDATA\ UNT TLED. RD <33> Eqn Library <F10> Codes \&F1> Hel p

Keys to use when editing in the Add/ Mbdify Window
Key Function

<1 ${ }^{\text {P }}$	Hel p
43>	Access Equation Li brary
¢10s:	Displ ays list of valid units and codes
<Tab>:	Mbves cursor to next cell in row
<Shft-Tab>:	Mbves cursor to previ ous cell in row
<RightArrow>:	Mbes cursor to next character
<eftArrows:	Mbes cursor to previ ous character
-Del et e>:	Del etes a character
$\left\langle\mathrm{Ctrl}\right.$ - Del > ${ }^{\text {P }}$	Del etes a line
<Ctrl-Q:	Quits without savi ng changes and exits to the Run Desi gn Menu.
<Ctrl-S>	Saves changes and exits to Run Design Menu (need to press it nore than once).

Criteria--

The Iist of Reassi gnment Criteria is necessary to execute reassi gnments. Bl OPAK will execute a reassi gnnent only if a record can be found that matches the Reassignment Criteria you listed. A datum natches a criterion when the criterion is an identical val ue or a blank. If all val ues for one case from the input data file match their respective criteria, then the data case matches the reassi gnnent and a reassi gnnent will occur. Species is the only criterion that must be included in a reassi gnment.

As an example, suppose you uant to reassign an equation for a pl ant component of a particular tree species, the speci es and component (and any other rel evant
criteria needed to identify the specific plant(s) or data record(s) to be reassi gned) would need to be entered in the reassignment criteria list. BIOPAK will check each case fromthe input data file to see if it natches the criteria. For each case that natches a reassignment will occur.

Plants within a specified size range of a gi ven paraneter can be reassi gned differently. For example, the snaller sizes of a particular tree speci es can be reassi gned to the same species with a shrublifeform To view a list of the Paraneter codes, nove the cursor to a paraneter cell and press $<\mathcal{F} 10>$. Sel ect codes fromthis list by scrolling to the desired parameter, and pressing Enter>; or type the codes di rectly onto the screen (see Appendi x : Codes for a list of valid paraneter codes).

Substitution keys--

The Substitution Keys al I ow you to specify what should repl ace the infornation in the Origi nal Equation Request when forming the Request to Li brary (for nore infornati on see Appendi x : Sel ecting Equations and Summations). BI OPAK will use this new request when searching for an equation in the Equation Library.

If there is more than one equation in the Library that natches the Request to Li brary, one of two things will happen. (1) You can specify the particular equation to be used by including the Local Equation Number in the Substitution line. If you do, you must fill in all other fields on that Substition line. (2) If you do not incl ude the Local Equati on Number, the equation BI OPAK chooses cannot be predicted.

You can sel ect equations di rectly from the Equation Li brary. Press $\mathbb{F} 3>$ to access the Li brary Editor from the Add/Mbdifv Window To sel ect only one equation, nove the cursor to the desi red equation and sel ect Reassi gnment sel ection from the Edit Li brary Menu. To sel ect more than one equation, mark the desi red equations, then sel ect Reassi gnment sel ection. Details on how to use the Li brary Editor can be found in Reference: Li brary Editor.

The Primary Li fef orm Def ault--

The Primary Lifeform Default can serve two purposes:

1. It can replace missing lifeform data: When lifeformis a variable in your Input Data File, but is missing in sone records, BI OPAK will substitute the Primary Lifef orm Defaultin the missing records. The steps used to find a lifeform are described in Appendix: Lif ef orm
2. It can assign output to strata in reports: If lifeformis a variable in your Input Data File, and is not missing in any records, the Primary Lifeform Default will assign the out put to a commity stratumin reports. [Note: by default, trees are assi gned to the Tree Stratum shrubs and coppice to the Shrub Strat um herbs, grasses, and sedges to the Herb Stratum nosses, lichens, and bryophytes to the Moss Stratum]

As an example, assume that lifeformis a variable in your Input Data File. There are no missing Lifeform codes in your Input Data File. You, honever, nould like the smaller salix trees to be assigned to the Shrub Stratum in the report output. In the Reassi qnment Add/ Mbdifv Vindow type in SALI X as the species in the Criteria and Substitutions, incl ude the paraneter range for the size of the willows to be assi gned to the Shr ub Stratum and type in S as the Prinary Lifef orm Default.

Library Editor

Mai n Menu
Desi gn a run edit equation Li brary Cal cul ate plant components Generate reports View reports or data goto dos Shell Qui t

Section
42 Equation Keys
43 Requi rements, assumptions and possibilities for BI OPAK equations

43
43
43
43
43
43
43
44
44
44
44
47
47

50 Add equation
50 Copy and edit equation
51 Vi ew or nodify equation
51 Di splay node
Mark/ unnark equation
Brouse equation(s)
Reassi gnment sel ection
Exit library editor
Editing an equation
Original and Final Equations Window
Equation as in BI OPAK
Equation as in Original Source
Sources of Equation Window
Source(s) of Data Window

Many users will need to use different equations than those supplied with BI OPAK. When working with large numbers of equations, it becones difficult to document sources of equations, make unit conversions, and enter equations correctly. We have tried to facilitate this by providing an Equation Li brary

Editor that allows you to add new equations to the existing Li brary, create a new Li brary, or locate, sort, modify, and generate documentation for equations in a Li brary.

Equation Li brary size is limited by only disk storage capacity. The naximm number of equations that can be used at one time to cal culate plant components is limited as described bel ow in Library Editor: Edit Li brary Menu: File--.

The Library Editor is invoked from the Main Menu by sel ecting:
edit equation Li brary
Several itens on the Edit Li brary Menu will be available. Menu choi ces that have no use at this point, honever, are not sel ectable.

Equation Keys

Bl OPAK sel ects equations primarily by using the Equation Key of each equation as described in Appendi x : Sel ecting Equations and subsequent sections. Thus, it is important that each equation have a unique Equation Key in a library. The following itens nake up an Equation Key:

- Speci es code
- Li f ef orm code
- Plant Component code
- Geographi c Area code
- Seral Stage code
- Local Equation number

The definitions of each code in the Li brary and in the BI OCODES file shi pped with Bl OPAK are gi ven in Appendix: Codes. Species codes are flexible; you can use any code no longer than six characters. The codes for lifeform are fixed; that is, you cannot use Lifeform codes other than those listed in Appendix: Codes. The codes for PI ant Component, Geographic Area, and Seral Stage must be in BI OCODES; if an unlisted code is used (see Appendi x : Codes for a list), add thi s new code to the BI OCODES file as descri bed in Appendi x: Customizing BI OPAK. If all the codes in the Equation Key are identical, for two or nore equations, gi ve them different Local Equation numbers to nake the Equation Keys uni que.

Duplicate equation keys may occur when one Equation Li brary File is appended to equations al ready in the Library Editor. Check for duplication and nodify the Local Equati on Numbers (or other parts of the Keys) to make the Equation Keys uni que. To do this, first sort the Li brary by the el enents of the Equation Key as gi ven above. Second, search by eye for duplicate Equation Keys. Thi rd, change the Equation Keys as needed after sel ecting View Modify fromthe Edit Li brary Menu.

Be sure that the Speci es codes chosen for Equation Keys are the same as those that will cone from your data; otherwise Equation Reassi gnnents will have to be made (see Reference: Desi gn a Run: Reassi gnments).

Requirements, assumptions, and possibilities for BIOPAK equations

Equation Numbers--

The Equation Number (as well as the Equation Key) should be uni que for every equation in an Equation Library. Unique Equation Numbers provide an easy way to identify and search for indi vidual equations.

Plant components (dependent variables)--

Components in the Library are the dependent variables in the equations. Every equati on must cal culate a val ue for only ONE plant, except when cover percent (COV) is a paraneter (predictor variable), as described in this section, bel ow

Codes--

The Component codes used to represent the dependent variables in the equations in the Li brary must conform to the codes listed in the Bl OCODES file. The Component codes in Bl OCODES, as shipped with BI OPAK, can be found in Appendix: Codes.

Units--

The units associated with the Component codes must conform with the units listed in the Bl OCODES file. The Component units in BI OCODES, as shipped with BI OPAK, can be found in Appendix: Units.

Parameters (predictor variables)--

Parameters in the Li brary are the predictor or independent variables in the equations. For many of the equations in the Library, there is nore than one parameter used to cal cul ate the components. For a gi ven component, some equations may use one parameter, and other equations may use another. The paraneter ranges for each equation usually are incl uded.

Cover, handled differently--

Each tine the paraneter COVER is used in the computation of a component, the result is multiplied by the area (in square meters) of the plot. To conform with this computation rule, for all equations that use COVER as a parameter, the coefficients installed in the Library must be calibrated so that the equation gi ves the plant component on a I.O-square-neter-plot, regardlless of the size of the pl ots used to devel op the equations. For component cal culations based on cover data, when possible, sel ect library equations based on a pl ot size equal to the pl ot size of your input data.

Number of plants, handled differently--

When the paraneter, number of plants (NP) is available, BI OPAK consi ders that Iine in the Input data File to represent NP plants. When NP is greater than 1 : the number of plants, tree basal area and cal cul ated plant component(s) and are multiplied by NP; and average val ues for the parameters are weighted by NP. Thi s occurs whether or not NP is a paraneter in the equation(s) used. This feat ure is provided so several plants of one species and size can be recorded on one line of a field form

We recomend agai nst including NP as an equation parameter because it could easily cause conf usi on. Number (NMM can be used instead for number of stens, fronds, et cetera.

New Predictor variable needed--
Occassi onally, users may want to use an input paraneter not included here, for example, plant density (for example, number of plants per square neter). Such parameters can be read in using one of the above nanes. Pl ant density, for example, can be read in as NMM When this is done it is very important to be sure equations are not used that incl ude that parameter with a different meani ng. You could guard agai nst thi s by building a newlibrary in which all equati ons (f or the speci es invol ved) that use the NUM paraneter are expecting density in the same units as in the Input Data File.

Codes--

The Paraneter codes used to represent the independent variables in the equations must conformto the Parameter codes listed in Appendix: Codes. These are the same parameters that can be specified in the Data Input Fornat Vindow of Design a Run (see Reference: Desi gn a Run: Data Input Format).

Units--
The units associ ated with the paraneters must conformto the units listed in Appendi x: Units.

Coefficients--

Coefficients are the val ues estimated by regression or other methods. There can be a naxi mum of four in an equation.

Equation types allowed--

The equation types in table 1 are currently built into BI OPAK Only these types can be used. We have found nost equations can be put in a library using one of these forns. Sometimes specifying a coefficient as 0.0 will allow a si mpl er equation to be entered using a nore compl es equation type. Soneti nes a new equation will need to be fit in a formallowed by BI OPAK.

Table l--Equation types and corresponding codes recogni zed by BI OPAK Equations are often shown here with a dependent variable that is logtransformed, for example, InY for clarity of presentation and to be consi stent with documentation in Biolib. The dependent variables are al nays untransformed, that is, Y, in BI OPAK. For I ogarithns: In = nat ural I ogarithm $\log =$ base 10 logarithm These equation type codes should be used when a new equation is entered in an Equation Library.

Code	Equation type
1	$\mathbf{Y}=C_{1}+\mathrm{C}_{\mathbf{2}} \mathbf{P}_{\mathbf{1}}$
$\mathbf{2}$	$\ln Y=\mathrm{C}_{\mathbf{1}}+\mathrm{C}_{\mathbf{2}} \ln \mathrm{P}_{\mathbf{1}}$
$\mathbf{3}$	$\log Y=\mathbf{c}_{\mathbf{1}}+\mathrm{C}_{\mathbf{2}} \log \mathbf{P}_{\mathbf{1}}$
$\mathbf{4}$	$Y=C_{1}+C 2 P_{1}{ }^{2}$
$\mathbf{5}$	$\mathbf{Y}=\mathbf{C}_{\mathbf{1}}+\mathbf{C}_{\mathbf{2}} \mathbf{P}_{\mathbf{1}}$

$$
\begin{aligned}
& 6 \quad \mathbf{Y}=c, \frac{e^{\left(c_{2}+c_{3} P_{1}\right)}}{\mathbf{1}+e^{\left(c_{2}+c_{3} P_{1}\right)}} \\
& 7 \\
& 8 \\
& 9 \\
& 10 \quad \ln Y=C_{1}+C_{2} P_{1}+C_{3} P_{2}^{2}+C_{4} \sqrt{P_{2}} \\
& 11 \\
& Y=C_{1}+C_{2} P_{1}+C_{3} \sqrt{P_{1}} \\
& 12 \quad Y=C_{1}+C_{2} \ln P_{1} \\
& 13 \quad \ln Y=C_{1}+C_{2} P_{1} \\
& 14 \quad y=e^{\left(c_{2}+c_{2} P_{2}\right)} P_{2} \\
& 15 \quad Y=C_{1}+C_{2}\left(P_{1} P_{2}\right) \\
& 16 \quad \ln Y=C_{1}+C_{2} \ln P_{1}+\ln P_{2} \\
& 17 \quad \ln Y=C_{1}+C_{2} \ln P_{1}+C_{3} \ln P_{2} \\
& 18 \quad \ln Y=C_{1}+C_{2} P_{1}+C_{3} \ln P_{2} \\
& 19 \\
& 20 \quad \log Y=C_{1}+C_{2} \log P_{1}+C_{3} P_{2}+C_{4}\left(\log P_{1}\right) P_{2} \\
& 21 \quad \log Y=C_{1}+C_{2} \log P_{1}+C_{3} \log P_{2}+C_{4} \log P_{1} \log P_{2} \\
& 22 \quad \log Y=C_{1}+C_{2} \log \left(\frac{1}{4} \pi P_{1}^{2} P_{2}\right) \\
& 23 \quad \log Y=C_{1}+C_{2} \log P_{1}+C_{3} \log P_{2} \\
& 24 \quad Y=C_{1}+C_{2} P_{1}^{3}+C_{3} P_{1}^{2} P_{2} \\
& 25 \quad \ln Y=C_{1}+C_{2} \ln \left(P_{1} P_{2}\right) \\
& 26 \quad Y=C_{1}+C_{2} P_{1}^{2}+C_{3} P_{1}^{2} P_{2}+C_{4} P_{1} P_{2} \\
& Y=C_{1}+C_{2} P_{1}^{3}+C_{3} P_{1}^{2}+C_{4} P_{1} P_{2}
\end{aligned}
$$

28

$$
Y=C_{1}+C_{2} P_{1}^{3}
$$

29
$Y=C_{1}+C_{2} P_{1}+C_{3} P_{1}^{3}$
30
$Y=C_{1}+C_{2}\left(P_{1} P_{2}\right)+C_{3} P_{2}$
$31 \quad \ln Y=C_{1}+C_{2} \ln P_{1}+C_{3} P_{2}+C_{4} \ln P_{2}$
32
$Y=C_{1}+C_{2} P_{1}+C_{3} P_{1}^{2}$
33
$Y=C_{1}+C_{2} P_{1}+C_{3} P_{1}^{2}+C_{4} P_{1}^{2} P_{2}$
34
$Y=C_{1}+C_{2} P_{1}^{3}+C_{3} P_{1}^{2}$
35
$\ln Y=C_{1}+C_{2} \ln \left(P_{1}+P_{2}\right)$
36
$\ln Y=C_{1}+C_{2} \ln \left(P_{1}^{2}+P_{2}\right)$
37
$38 \quad Y=C_{1}+C_{2}\left(P_{1}^{2} P_{2}\right)^{\frac{1}{3}}+C_{3}\left(P_{1}^{2} P_{2}\right)^{\frac{2}{3}}+C_{4} P_{1}^{2} P_{2}$

39
$Y=C_{1} P_{1}^{2}\left[C_{2}+C_{3} P_{2}+\frac{C_{4} P_{1} P_{2}}{\left(P_{2}-137.16\right)}\right] \frac{P_{2}^{3}}{\left(P_{2}-137.16\right)^{2}}$

40
41
$y=e^{\left(C_{1}+C_{2} \ln \left(P_{1}^{2} P_{2}\right)\right)}-e^{\left(C_{3}+C_{4} \ln \left(P_{1}^{2} P_{2}\right)\right)}$

$$
\mathbf{Y}=C_{1}+C_{2} P_{1}^{2}+C_{3} P_{1}^{4}
$$

42
$\ln Y=C_{1}+C_{2} \ln P_{1}+C_{3} \ln \left(P_{2}^{2}+P_{3}^{2}\right)$

44

45
$\ln Y=C_{1}+C_{2} \ln P_{1}+C_{3}\left(\ln P_{1}\right)^{2}$
46

$$
Y=C_{1}+C_{2} P_{1}+C_{3} P_{2}
$$

47

$$
Y=C_{1}+C_{2} P_{1}+C_{3} P_{2}+C_{4} P_{3}
$$

$$
\ln \left(Y+C_{1}\right)=C_{2} \ln \left(P_{1}+C_{3}\right)+C_{4}
$$

49

$$
\ln Y=C_{1}+C_{2} \ln \left(P_{1}+C_{3}\right)^{2}
$$

50

$$
\begin{aligned}
& \ln Y=C_{1}+C_{2} \ln P_{1}+C_{3} \ln \left(P_{2}+C_{4}\right) \\
& Y=\mathbf{c}_{\mathbf{1}}+\mathbf{C}_{2} \mathbf{P}_{\mathbf{1}}{ }^{\mathbf{c 3}}+\mathbf{C}_{4} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{3}}
\end{aligned}
$$

51

Modifying and creating equation libraries

Your first step when using the Li brary Editor will be to add one or nore equations (see Add equation-- bel ow in this section), or retrieve an existing library (see File--: Retrieve library bel ow in this section). Once you have done one of these, one line of docunentation for each equation in the Li brary Editor can be seen in the Eauati on Summary Window File nai ntenance and many other j obs can be done with the Edit Li brary Menu. Equations and copies of equations can be nodified. These steps are described in the following sections.

Equation Summary Window

	Edi t L Pl nt F Comp	Equation Li brary G S LE T Eq--P AS \# L Tp Code	araneter-- --Paraneter-min max Code min max	:1/252 $\mathbf{N} \quad \mathrm{R}^{\wedge} 2$
A	BL	2 IDBH	File	
23 ABAM	BFT	2 CDBH		$9 \quad 0.9$
320 ABAM	T BST	W $01 \begin{array}{llll}\text { l }\end{array}$	Sort equations	750.9.
25 ABAM	T BSW	W 01 T 2 DBH	Locate equation(s)	140.9
708 ABCO	T VSW	C M1 T 37 DBH	Del ete equation(s)	3780.9
323 ABMAS	T BST	W01 T 2 DBH		17 0.9'
321 ABMAS	T BSW	W 011 T 2 DBH	Add equati on	17 0.9'
707 ABMAS	T VSW	C M 1 T 37 DBH	Copy \& edit equation	650.9
28 ABPR	T BBL	WM1 T 2 DBH	Vi ew or nodi fy equation	0.9
27 ABPR	T BFT	WM1 T 2 DBH		0.9
30 ABPR	T BSB	WM1 T 2 DBH	di spl ay mode	$6 \quad 0.9$
253 ABPR	T BST	WM1T 2 DBH	Mark/ unnark equati on	3100.9
29 ABPR	T BSW	WM1 T 2 DBH	Brouse equation(s)	0.9
77 ACCI	5 AFT	WM1 S 2 DBA		190.9
80 ACCI	K AFT	WY 1 S 2 DBA	Reassi gnment sel ection	190.9
82 ACCI	K BBD	WY 1 S 2 DBA		0.3
78 ACD	5 BBL	WM1 S 2 DBA	Exit library editor	1109
81 ACCI	K BBL	WY 1 S 2 DBA		0.9
76 ACCI	S BFT	WM1 S 2 DBA	$0.6 \quad 13.1$	310.9
D: \BI OPAK	\ TESTDAT	TAIA ADLI B	<F10> Menu of f	> Hel

Column headings--

For each equation in the Li brary, the Equation Summary Window will di splay the fol l owing:

- Eqnt: Equation number (unique number used to identify equations).
- spp: Species of plants in source data.
- LF: Lifeform of plants in source data.
- Pl nt Comp: Pl ant Component code (dependent variable).
- GA: Geographic Area of plants in source data
- SS: Seral Stage of plants in source data
- LE\# Local Equation number (number used to di stingui sh equations with identical equation keys).
- TL: Taxononic Lifeform "True" lifeform of species.
- Code: Code for parameter (i ndependent variable) used to cal cul ate component. Up to tho components are di spl ayed.
- min: Mnimual ue of paraneter used to construct equation.
- max: Maxi mum val ue of parameter used to construct equation.
- N : Number of plants in sample.
- $R^{\wedge} 2: V a l u e ~ f o r ~ R-s q u a r e ~ o f ~ e q u a t i o n . ~$

Special keys--

Key	Function
《Ssc>	Renoves the Edit Li brary Menu (necessary bef ore scrolling through the one-line equation summaries)
<PgUp>, <PgDn> <Arrons>	Shovs the previ ous or next page of equation summari es Move the highlight bar through the equation summaries and highlight a particular equation
¢10	Toggl es the Edit Li brary Menu
<1>	Provides entry to hel p screens Marks an equation and noves the highlight bar to the next equation (+ and - work Iike Mark/ unnark equation on the Edit Li brary Menu)
<->	Unnarks an equation and noves the highlight bar to the next equation
	Shovs the documentation of the highlighted equation summary in the Original and Fi nal Equations Window - sane as View Mbdify on the Edit
	Li brary Menu

Edit Library Menu

When there are equations in the Li brary Editor, any item on the Edit Li brary Menu can be chosen (if you have entered the Li brary Editor fromthe Main Menu); Otherwise, the editing functions are not sel ectable. The following sections descri be how to use the functions of thi s menu. Instructions for editing an indi vidual equation are in Editing an Equation.

File--
IIf File is sel ected from the menu, a File Menu will be di splayed with the foll owing sel ections:
Retrieve library: Retrieve an existing Equation Li brary (*.DBF file). You can sel ect a file from the File Selection Vindow
Save equations: Save the Equation Li brary currently in BI OPAK. When Save is sel ected from the File Menu, a File Type Menu appears. The current library can be saved and renamed as one of three file types:

- equation library Database (*. DBF),
- Equation list file (*.EQN), or
- Text documentation (*. TXT).

When saved as a Database, the file can be read into the Equation Li brary Editor for future brousing and editing; it can be used for sel ecting equations from the Reassi gnnents Add/ Modify Vindow of Design a Run and to create Text
documentation or Equation List File (needed for cal culating plant components).

The Equation List File (*. EQN) can be saved onl y after saving as a Database. If the file has not been saved as a database file, Equation list file will not be sel ectable. The Equation List File is needed to cal culate plant components. A naxi mum of 4, 000 equations nay be in an Equation List File, with a naxi mum of 600 for any gi ven species.

The Equation Documentation Text File (*. TXT) is a flat ASCI file. If changes have been made to the current Equation Li brary Database, save the database file bef ore saving text documentation. Depending on the number of equations in the Database File, this may be very large (with two equations per page). The file can be used in uord processing docunents or for reference purposes.

Keep the original Li brary (BI OLIB.DBF and BI OLIB. FPT) in the BI OPAK directory, and save new and nodified Li braries in the di rectory containing any test data or report files generated. This will avoid conf usi on about which Li brary to use and reduce the likelihood of accidently overwiting the original Library.

Retrieve can bring in an initial Equation Library to work on or append one or nore additional libraries.

You can read in an Equation Li brary when equations are al ready in the Li brary Editor, but you must be careful. BI OPAK checks the i ncoming Library for equations with equation numbers the same as those al ready in the Li brary Editor. You will be gi ven the choice of allowing them in or del eting them BI OPAK does not check for equations with duplicate equation keys. This will not affect the sel ection of equations by BI OPAK unl ess they have identical Equation Keys.

If two or more equations have identical keys it will be impossible for Bl OPAK or you to differentiate them when making cal cul ations--any might be used.

When using Save, after choosing the file type, you will be asked to specify the equations to save in the Scope Menu.

Itens that can be saved:

- Marked equation(s) if any are marked.
- Current equation (equation indi cated by the hi ghl ight bar).
- Range of equations (range of Equation Numbers, not range of record numbers in the file).
- Al equations in the Li brary Editor.

Next, specify the name of the output file in a File Selection Window

Sort equations--

Allows sorting of the equations in the Li brary Editor. Sorting can be done by one sort key (Single key sorting) or by several keys simultaneously (Mitiple key sorting).

Si ngle key sorting al lows sorting by one of the following:

- equation Number
- Pl ant speci es
- Li f ef orm
- pl ant Component
- Geographi cal area
- Seral stage
- equation Type

Multiple key sorting allows sorting by any conbination of the above, in any order. Enter the number, or rank, to be associ ated with the el enent in the key when sorted.

Sort, conbi ned with Locate, can be hel pf ul in finding all equations with the same species, geographic area, or plant component.

Locate equation(s)--

Displays a Locate Equation(s) Menu with the following sel ections:

- equation Number
- equation Key
- next natch
- Qui t

When equation Number is sel ected, the cursor noves to an open space above the field of Equation Numbers. Type in the number to be searched for. After it is entered, it will be right-justified. Therefore, there is no need to incl ude I eadi ng zeroes, blanks, or wild cards (?); they nouldinvalidate the search. Pressing \&Enter> compl etes the search.

When equation Key is sel ected, the cursor noves to an open space above the first el ement in an Equation Key (Species). You must type in the characters in the Equation Key (codes for Speci es, Lifef orm Pl ant Component, Geographic Area, Seral Stage, and the Local Equation Number) to be searched for. Typing a wild card (?) matches any character in that col um, thereby allowing you to search for a certain PI ant Component or Equation Type, for example. Pressing \&nter> compl etes the search.

After compl eting a search for an Equation Number or Equation Key, the Locate Equati on(s) Menu reappears so another search can be made. The Edit Li brary Menu l eaves the screen when finding equations so that nore infornation about the equations can be seen. Whenever Next match is a sel ectable nenu item it can be used; for example, after locating and editing an equation, the Next natch to the last search key can be found.

Delete equation (s)--
The following nay be del eted:

- Marked equation(s) if any are marked,
- Current equation (equation indicated by the hi ghlight bar),
- Range of equations (range of Equation Numbers, not range of record numbers in the file),
- Al equations in the Li brary Editor. This clears all the equations currently in Bl OPAK, but does. not affect the Equation Li brary File that was read into the Library Editor.

You will be asked to confirm del ete commands.

Add equation--

Displays an Oriqi nal and Final Equations Window from which you will be able to fill in documentation for the equation being added as described in Editing an

Equation. This new equation will be gi ven an equation number that is one greater than the greatest in the Library Editor.

Copy and edit equation--

Makes a copy of the equation identified by the highlight bar and displays it in the Original and Final Equations Vindow so its documentation can be edited as described in Editing an Equation. This new equation will be given an equation number one greater than the greatest in the Li brary Editor. Change at least one el ement in the Equation Key so it is not the same as that of the equation copi ed.

View or modify equation--

Di spl ays the Original and Fi nal Equations Window for the hi ghl ighted equation, allowing it to be viewed or edited as described in Editing an Equation.

Display mode--

Displays a menu of three video nodes (lines per screen):

- 25-I ine mode (default)
- 43-line node
- 50-I ine node

Depending on the node(s) supported by your PC, 43 or 50 Ii nes al I ows viewing nore equation summaries; however, editing documentation nay be harder.

Mark/unmark equation--

This feat ure functions like \mathbf{t} and - on the Equation Summary Vindow

- Minarks an unmarked equation or unnarks a narked equation, and noves the highl ight bar to the next equation.

Browse equation(s)--

There are several ways to browse the Library: Pressing $<\mathrm{FlO}$ will toggle the menu off; Pressing 《sc> al so will renove the menu; and Brouse equation(s) al so will turn the nenu of f and allow you to browse the equations.

Reassignment selection--

This option is available only when accessing the Li brary from Design a Run. While in the Reassi gnnents Add/ Modifv Window of Desi gn a Run, this feature allous the selection of one or nore equations. The equation(s) sel ected will then appear as Substituti ons in the Reassignments Add/ Modify VIndow (see Reference: Design a Run: Reassi gnments).

If sel ecting only one equation, highlight the equation, press $\mathbb{F l} 0>$ to bring back the Edit Li brary Menu, and sel ect Reassi gnnent sel ection. To sel ect more than one equation, mark the equations and sel ect Reassi gnnent sel ection.

Exit library editor--

When exiting, BI OPAK will prompt you to save the equations in the Editor if changes may have been made si nce the equations were retri eved or saved (that is, if you used $\langle P g$ Pp of $\langle\mathrm{Ctrl}-\mathrm{S}\rangle$ to exit from an editing window). You can sel ect File to save changes.

Editing an equation

The documentation for an equation can be edited n three windows. The original
and Fi nal Equations Window contains identifying inf ornation (incl uding Equation Number, genus, species, and Equation Key), the equation as in the original source and the equation as used by BI CPAK. The Source(s) of Equation Window shows the same identifying information, the location of the raw data (if known), and the source of the equation (literature reference, person, or unpubl ished report). The Source(s) of Data Vindow shows the sources of the raw data used to build the equation, including literature citation(s), site and vegetation descriptions, and important characteristics of the samples. The content and function of these windows are described in nore detail bel ow

Document equations as fully as possible, but realize that it often is not possible to fully document sone equations, even from published sources. Inf or nation deemed important for which there is no specific location in these wi ndous can be put in the Source(s) of Data Window

Original and Final Equations Window--

This wi ndow is reached by hi ghlighting the one-line summary of the desi red equation on the Equation Summarv Vindow and ei ther pressing Enter>or sel ecting Vi ew Modify from the Edit Li brary Menu. In this window, <Tab> and Shift-Tab> nove the cursor bet ween fields, pointing and clicking the left button on the nouse will position the cursor anywhere in any field, and <CtrlHone> will allow you to change the Equation Number.

Avoi d dupl icate Equation Keys and Equation Numbers, and choose appropriate Speci es codes, as described in Equation Keys and Equation Numbers, above.

Bl OPAK Edit Equation Li brary View Modify \quad Rec: 1/252
Ctrl-Hone>: Change EQN \# ORI G NLL AND FI NAL EQUATI ONS
EQN \# 24 LI FEFORM T SPP: ABAM Abi es amabilis
LANT COMP: BBL GEOG AREA: WSERAL' STAGE: 0 LOCAL EQN \#, 1 TAX LIFE: T
EQUATI ON AS IN BI OPAK: Paraneters (where neasured): MN MAX UNT
DEP. VAR: Li ve branch bi onass
PARI: DBH Stem di a. © breast ht
11. 7 90. 4 cm

AR2:
AR3:
OEFS: 1> 1.6708 2> 2. 6261
4> EQ F:
QN FORM $\operatorname{In}(B B L)=1.6708+2.6261 * \ln (D B H)$
EQUATI ON AS IN ORI G NLL SOURCE:
ARAMETERS: (nane, where neasured on plant):
EP VAR: Li ve branch bi onass
NDEP VAR1: DBH
MN MAX UNI
11.790 .4 cm

NDEP VAR2:
NDEP VAR3:
QN FORM $\ln (B B L)=-5.2370+2.6261 * \ln (D B H)$
AMP SIZE: 9 R^2: 0. 96 MSE: 0.163 SEE: 0.404 LOG BI AS CORR:
<Ctr]-PgUp>: Previ ous equation
<PgUp>: Save/ Page up
<Ctrl-S>: Save/ Exit
D: \BIOPAK $\backslash T E S T D A T A \backslash A D L I B . D B F$
<Ctrl-PgDn>: Next equation $\langle P g D n>:$ Edit Sources of Eqn and Data \langle Ctrl-Q>: Cancel changes/Exit
$\langle\mathrm{Fl}\rangle \mathrm{Help}$

Equation as in BIOPAK--

Inf ormation from the subsection EQUATI ON AS IN BI OPAK is used to cal cul ate pl ant components. The fields contain the following:

- LI FEFORM Lifef orm code for this Equation. May be any shown in Appendix: Codes, incl udi ng K (Coppice) so equations with this uni que growth form can be di sti ngui shed.
- TAX LIFE: Taxononic Lifeform code. Should not be K (Coppice). This is the first Lifeform Code BI OPAK Iooks for if Lifeform did not cone in from the I nput Data File.
- DEP. VAR: Name or description of the dependent variable. This should match the Plant Component code. Its units must match those given in Appendix: Units: Component Units for this plant component. Give the range if known.
- PAR1, PAR2, PAR3: These are the independent variables in the equation, or paraneters. Their codes must natch those built into BI OPAK, described in Appendi x : Codes. The units must match the standard netric units in Appendi x: Units: Parameter Units. Nane the paraneter and describe any uni que characteristics, for example: "DBA Diam @ base, 10 cm aboveground". Paraneters may be in any order; BI OPAK is not sensitive to order. New codes cannot be added, but other data can be used under these codes, as descri bed in Appendi x : Codes.
- EQ T: Equation type number must correspond to one of the equation types in table 1. This is used in cal culating plant components.
- COEFS: Coefficients of the equation formgiven on the next line. These are used in cal cul ating plant components.
- EQN FORM This is the form and coefficients of the prediction equation after al I transfornations to units required by BI OPAK and al gebraic mani pul ations needed to get it to match one of the forns in table 1 .

Eauation as in Original Source--
I nf ormati on from the wi ndow subsection EQUATI ON AS IN ORI G NLL SORCE is used to document the original al gebraic form coefficients, units, and statistics. This makes it easier to check for mistakes in transfornations and units conversi ons should esti nates from the equation come into question. Information in this subsection is not used in cal cul ations. The MSE is the mean squared error, and SEE is the standard error of the estimate of the equation fit to the data.

Hot keys at the bottom of the Oriqinal and Final Equations Window nake it easy to nove to the Sources of Eauation Window for this equation, this window for the previ ous and next equations, and the Eauation Summarv Window

Sources of Equation Window--

This wi ndow is reached from the Original and Final Equations Window by pressing〈PgDn>. In this window, <Tab> and <Shift-Tab> nove the cursor between fields, pointing and clicking the left button on the nouse will position the cursor anywhere in any field, and <Ctrl-Hone> will allow you to change the Equation Number. No information in this window is used in cal cul ations.

The wi ndow subsection RAW DATA LOCATI ONS can incl ude information hel pf ul in finding the data used to build the equation, including person(s), location, computer, storage device, file name(s), and methods of access.

```
Bl OPAK Edit Equati on Li brary Vi ew Mbdify
CtrI-Hone>: Change EQN # SOURCES OF EQUATI ON
QN # 24 LIFEFORM T SPP: ABAM Abi es amabilis
LANT COMP: BBL GEOG AREA: W SERAL' STAGE: O LOCAL EQN # 1 TAX LIFE: T
AMP SIZE: 9 R^2: 0.96 MSE: 0. 163 SEE: 0.404 LOG BI AS CORR: Y
    RAW DATA LOCATI ONS (person, file name & line nos.):
    SOURCE OF EQUATI ON (lit. ref or person):
hol z et al. 1979. Equati ons for estimating... Res Pap 41, For Res Lab, Ore
tate Univ.
```

1. Krumik, J G 1974. Bi onass.. M S. thesi s, Uni v. B. C. , Vancouver. 87 p. 12 ees 32.0-76. 2 cm dbh, near Squamish B. C., 1500 m el evation, south aspect 2 uj i nori et al. 1976. Bi onass.. J Jpn. For Soc 58(10): 360-373. Wil dcat Mtn. A, Ore 2 trees 11.7 cm and 19.4 cm dbh , 1300 m el evation.
<Ctrl-PgUp>: Previ ous equation <Ctrl-PgDn>: Next equation
<PgUp>: Save/ Page up
<Ctrl-S>: Save/Exit
D: \BI OPAK TESTDATA\ ADLI B. DBF
$\langle P g D n>:$ Edit Equation Data Source
<Ctrl-Q: Cancel changes/Exit
\&I > Hel p

The wi ndow subsection SOURCE OF EQUATI ON shoul dincl ude the authority for the equation; for example, a literature citation, description of how to find an unpubl i shed report, or the person responsible for the validity of the equation.

Source(s) of Data Window--

This window is bel ow the Sources of Eauation Vindow To make changes, it is reached from this window by pressing $\langle P g D n>$. When it is active, the cursor appears inside and is surrounded by a double line. Text wraps automatically when typed in or del eted. There is no cut-and-paste capability. The following keys have special functions:
K e y Function

Thi s wi ndow can be used to document the I ocation and grouth envi ronment of the pl ants sampled to build the equation. This may include geographic location(s), climatic factors, soil characteristics, vegetation age(s), seral stage(s), sample si zes and size ranges fromthese places, important details of the sampling procedure, and important or unconventional aspects of plant measurements.

This infor nation shouldincl ude envi ronnental factors thought to significantly influence plant grouth formso potential users can judge the appropriateness to pl ants in the envi ronments of their sites. It al so shouldincl ude el enents of the sel ection of study sites and pl ant samples and neasurenents of plant part that may restrict the utility of the equation.

Calculate Plant Components

Desi gn a run Menu
edi t equati on Li brary
Cal cul ate plant components
Generate reports
View reports or data
go to dos Shel I
Quit

Section
56 Title
56 Files to be used
56 Di agnostic Reports
56 Go

To cal culate plant components, first Design the Run and save the Run Desi gn File, know which Equation List File will be used, and have the Data File available to Bl OPAK Start this process by selecting at the Main Menu:
Cal cul ate plant components
The Cal culate Pl ant Components Vindow will appear. Now sel ect the Run Desi gn File (*.RD), Equation List File (*.EQN), and Input Data File (*. DAT) used for cal cul ations and the Internedi ate Bi nary File to recei ve out put (*.IBF). Cal culations go to the Internedi ate Bi nary File; and reports are generated from this file. These rel ations are shown in figure 1.

Title

VIth the hi ghlight bar on this line, press Enter>. The title entered will appear in all reports produced from this run.

Files to be used

To change a file shown on the Cal culate Plant Components Window nove the highlight bar to the file name and press 《Enter>. Then select a file from the File Sel ection Vindow as descri bed in Getting Started: Overvi ew of Feat ures: File Selection Window.

NOTE: If your Input Data File does not have . DAT extension, rename the file and give it the. DAT extension so it will appear in the File Sel ection Window

To make multiple runs and save the Inter medi ate Bi nary File produced fromeach run, change the name of the Internedi ate Bi nary File each tine.

Diagnostic Reports

Di agnostic Reports al so are sel ected on the Cal culate Pl ant Components Vindow These reports are described in Reference: Reports and Ot her Output: Di agnostic Reports. Highlight a report title, and then press Enter>to sel ect and desel ect the report (Yes/ Nb). File names for Di agnostic Reports are gi ven the root nane of the Internedi ate Bi nary File and the extensi on . USE, . DET, .ERR, as described in Reference: Reports and Other Output: Di agnostic Reports. They can be vi ewed through the View Reports Window

Go

When appropriate files and reports have been sel ected, sel ect GO to make the cal cul ations that put them in the Internediate Bi nary (.IBF) File. Give the file a new nane to avoid overwriting the existing one.

Reports can now be generated. For a description of reports, see Reference: Reports and Other Output: Reports for People and Reference: Reports and Other Out put: Machi ne-readable Reports. The.IBF file nay be saved after the first series of reports have been generated fromit so that additional reports can be generated Iater.

Generate Reports

Mai n Menu
Design a run
edit equation Li brary
Cal culate plant components
Generate reports
View reports or data
go to dos Shel I Qui t

Section
58 Internedi ate Bi nary File
58 Reports to be generated
58 Output units
58 Go

After pl ant components are cal cul ated, Reports for People and Machine-readable Reports can be nade fromthe Internedi ate Bi nary File (.IBF). To do this, sel ect from the Mai \mathbf{n} Menu:

Generate reports
The Generate Reports Vindow will appear. From here sel ect the plant, plot, and stand summary reports to be generated and the output units preferred.

By default, the file nanes will be gi ven the same root as the. IBF File. Names can be changed if desired, as described bel ow You cannot, however, change the extension of the file name.

Intermediate Binary File

The Internedi ate Bi nary File shown is the Iast one created or used in this di rectory. It can be changed by sel ecting internediate Bi nary file, and then sel ecting a different. IBF File in the File Sel ection Vindow

Reports to be generated

Sel ect and desel ect appropriate reports by typing the capitalized hot key or by noving the menu bar to the report and pressing Enter>. Afile nane can be changed by highlighting the file nane with the nenu bar, pressing-《Enter>, and then changing the name in the File Sel ection Vindow The different reports are described in Reference: Reports and Other Output.

Output units

Toggle the output units by pressing <nter>. If netric is toggled, output will be in standard metric units. If English is selected, output will be in standard English units. See Appendix: Units for a list of BI OPAK standard units.

Go
Once the desi red files and reports are specified, sel ect Go to generate the reports.

View Reports

Mai n Menu
Desi gn a run edi t equation Li brary Cal cul ate plant components Generate reports
View reports or data go to dos Shel I Qui t

Section
60 Changing a file nane
60 Viewing the report
60 Reports and files to be viewed
60 Using LISTR

Al reports and data files, except the Internedi ate Bi nary File, can be exami ned by sel ecting, from the Mai n Menu:

View reports or data
The View Reports Vindow will appear. From here you can view the reports shown on the screen or change the name of the reports to be viewed. By default, the file nanes appearing are those last viewed or produced.

Changing a name

On the View Reports Vindow find the title of the appropriate report. The file name of the last report of this type, created or vi ewed, is shown j ust bel ow its title.

You can sel ect another file name by noving the highlight bar to the file name (for example, MACK1. RPT), and pressing Enter>. A File Sel ection Vindow will appear, thereby allowing sel ection of an exi sting file as described in Getting Started: Overvi ew of Features: File Sel ection Windows.

Viewing the report

After the file has been sel ected, nove the highlight bar up to the, report title (for example, Reports for People) and press Enter>. The sel ected file will be di spl ayed. To scroll through the files and reports, use the arrow keys and〈PgUp> or 〈PgDn>. Press X to return to the View Reports Vindow Sone reports are wi der than the screen; use the right arrow keys to vi ew the right hal f of these reports.

Reports and files to be viewed

- Reports for peopl e. These reports, whi ch incl ude the I ndi vi dual PI ant Report, Pl ot Summary Report, and Stand Sumary Report, were produced in Generate Reports. The file has the extensi on . RPT.
- PI ant Data (or DOS text file). This View Reports sel ection can be used to view the Input Data File (*. DAT), the Run Design Report (*.RDR), or any file with an ASCl fornat. By default, whenever you enter View Reports, the Input Data File (if it has extensi on. DAT) is the file shown under Plant Data (or DOS text file). This file name can be changed as descri bed above.
- Di agnostic Reports. These reports were produced in Cal cul ate Pl ant Components. The reports have the extensi ons . DET, . USE, and .ERR.
- Machi ne-readable Reports. These reports were produced in Generate Reports. These reports have the extensi ons .IND, . PLT, and . STA

For more detailed infornation on the reports, see Ref erence: Reports and Other out put.

Using

Vi ew Reports uses a program called LIST made by Buerg Softuare. When vi ewing a file in LIST, pressing H di spl ays the help screen--it is self-expl anatory and easy to use. LIST will work outside of BI OPAK.

Reports and Other Output

Section

```
6 1 ~ R u n ~ D e s i ~ g n ~ R e p o r t
6 1 ~ D i ~ a g n o s t i c ~ R e p o r t s
62 Summarized Equati on Use Report (*.USE)
                            Col umm headi ngs in Summarized Equation Use Report
62 Detail ed Equati on Use Report (*. DET)
    Col umm Headi ngs in Detailed Equation Use Report
    Error Report (*.ERR)
        Col umn headi ngs in Error Report
        Printing Di agnostic Reports
    64 Internedi ate Bi nary File (*.I BF)
64 Reports for Peopl e (*. RPT)
            I ndi vi dual PI ant Report
64 Pl ot Summary Report
64 Stand Summary Report
    Infornati on in Reports for People (*.RPT)
65 Infornati on in I ndi vi dual Pl ant Report
66 Infornati on in Pl ot Summary Report
66 Infornati on in Stand Summary Report
66 Error codes
66 Printing Reports for People
67 Machi ne-Readabl e Reports
67 I ndi vi dual Pl ant Report (*. I ND)
67 Pl ot Summary Report (*. PLT)
67 Stand Summary Report (*.STA)
67 I nf ormati on in Machi ne-Readabl e Reports
```

BI OPAK produces several reports and out put that are bri efly described here. If nore information is needed, it usually can be found by exanining the reports. Reports can be exami ned by sel ecting Vi ew Reports from the Main Menu, by printing the file, or by using a text editor or nord processor.

Run Design Report

This report is a flat ASCII file that documents the Run Design File contents. It can be produced by sel ecting run Design report fromthe File Menu of Design a Run. The report will be gi ven an . RDR extensi on.

The report contains headi ngs and contents for each of the Run Desi gn sections; that is, Default Settings, Data Input Fornat, Components to Output, and Reassi gnments. It can be usef ul for future reference.

See Tutorial: Lesson One for an example of a Run Design Report.

Diagnostic Reports

Diagnostic Reports specify the equations used to make cal culations and the errors detected by BI OPAK during cal cul ations. They can be requested when Cal cul ate Pl ant Components is sel ected from the Main Menu.

Summarized Equation Use Report (*. USE)--

This report presents a summary of the equations used for cal cul ations. Species are ordered al phabetically in tuo sections. The first section contains Equation Requests (if any) for which a component was cal culated. It lists all conbi nations of Original Equation Request, Request(s) to Li brary, Equation(s) Actually Used and the number of ti nes each combi nation was used during cal cul ations. The I owest Equati on Sel ection Penalty associ ated with each conbi nation al so is reported. Equations used in summations specified by you or sel ected by BI OPAK are shown. Sequence numbers provided are sequential indi ces of the itens in the report.

The second section contains Requests (if any) for which no suitable equation was found. If a component could not be cal culated, there are no equations actually used. If all information needed to make a Request to the Li brary is not found, this Request is not shown. This is usually caused by lack of a Iifeform code resulting fromabsence of any equation for this species in the I i brary.

The file name of this report is the root of the Internedi ate Binary File with a . USE extensi on. The Iist is not linked to individual input records, as in the case of the Detailed Equation Use Report.

Column headings in Summarized Equation Use Report-

- Seq: I ndi cates sequence number of uni que Ori gi nal Requests.
- Origi nal Request: Equati on Key bef ore Reassi gnment, if any. See Glossary.
- Seq: I ndi cates sequence number of Equation(s) Actually Used used to satisfy each uni que Original Request.
- Best ESP: The I onest Equation Sel ection Penal ty resulting from use of the Equation(s) Act ually Used Key shown. This differs by record. See Glossary.
- Use Count: Number of uses of this Equation(s) Actually Used.
- NoCal Count: Number of tines this Request to Li brary was not satisfied.
- RA: Indi cates this Original Request matched any Reassi gnnent Criteria.
- Request to Library: Equation Key representing the Request to Library. See Glossary.
- Equati on(s) Actual Iy Used: Keys of equations actual ly used to cal cul ate the requested component. May be a summation. See Glossary.

Detailed Equation Use Report (*.DET)--

For every component requested for each input record (plant), this report lists the Origi nal Equation Request, the Request(s) to Li brary, the Equation(s) Actually Used, and the Equation Sel ection Penal ty for the equation (or summation) used. Each Case number corresponds to an indi vidual input record and an indi vidual plant and equal their line numbers in the Input Data File. The Case number is the same as that in the Error Report and the I ndi vidual Pl ant Report of the Reports for People. Sequence numbers provided are sequential indices of the itens in the report. Information is presented for al I Original Equation Requests, whether or not a component val ue could be cal cul ated.

Its file nane is the root of the Internedi ate Bi nary File and a . DET extension. Multiple equati on keys indi cate that the component val ue is the sum of val ues obtai ned from these equations.

Col um Headi ngs in Detail ed Equation Use Report--

* Seq: I ndi cates sequence number for al I Original Requests.
- Case: Represents the record number in Input Data File.
- ESP: The Equati on Sel ection Penal ty val ue associ ated with the Equation(s)

Actually Used (or Request to Li brary if not suitable equation was found).

- Ori gi nal Request: See Reference: Reports and Other Out put: Summarized Equation Use Report (*. USE), above.
- RA: See Sumarized Equati on Use Report (*.USE), above.
- Request to Li brary: See Summarized Equation Use Report (*. USE), above.
- Equation(s) Actually Used: See Summarized Equation Use Report (*. USE), above.

Error Report (*.ERR)--

Thi s report lists codes for the two nost serious errors and narni ngs detected by BI OPAK during sel ection of an equation or group of summed equations and computation of a component val ue. For every error and warning it provides the Original Equation Request; (2) the val ues and variable names of Date, Local e, Stand, Pl ot, and PI ant ID; and (3) the val ues and variable names of the parameters. Each case number corresponds to an indi vidual input record, that is, an individual plant. This case number is the same as that in the Detailed Equation Use Report and the Indi vidual Plant Report of the Reports for People.

The Error Report file name is the root of the Internediate Bi nary File and the extension.ERR. Definitions for error and warning codes are listed in Appendix: Troubl eshooting: Error Messages.

Col umm headi nas in Error Report--
Note that headi ngs in parentheses nay be changed by the user in the Data Input Format VIndow of Desi gn a Run.

- Case: Corresponds to the record in the Input Data File and to case number in the Indi vi dual Pl ant Report and Detailed Equation Use Report.
- Site Identifications: These five headings can be changed by the user in the Data Input Fornat Vindow of Desi gn a Run. They are:
- (DATE): Date identifier from Input Data File.
- (LOCALE): Locale identifier from Input Data File.
- (STAND): Stand identifier from lnput Data File.
- (PLOT): Pl ot identifier from Input Data File.
- (PLANT ID): Plant identifier from Input Data File.
- ORI G NAL REQUEST: See Reference: Reports and Ot her Out put: Summarized Equation Use Report (*.USE), above.
- Dat a/ Def aul t :
- Spp: Speci es code from Input Data File.
- LGS: Lifeform Geographic Area, and Seral Stage codes. Al so indicates whether codes cone from Data: Input Data File, or Default: Default Settings Vindow of Design a Run and Lifeform substitution procedures (as described in Appendix: Li fef orm).
- Paraneters: Val ues are listed for each of the parameters specified in the Data Input Fornat W ndow of Desi qn a Run.
- Errors: Error codes are gi ven for each component requested for cal culation. These codes are explained in Appendix: Troubl eshooting: Errors in Reports.

Printing Diagnostic Reports--

These reports contain 132 characters per line or more, so printing must be done on printers or using fonts that allow this or both. We suggest you print all BI OPAK reports on continuous paper because page breaks and headi ngs occur onl y
once at the top of each report, not every 60 or 80 lines.

Intermediate Binary

This file contains the cal cul ated plant components and allother infornation used to generate reports. It is produced when Cal cul ate Pl ant Components is sel ected from the Main Menu. This file name can be specifiedin the Cal culate Plant Components V^{\prime} ndow, it is given the extension. IBF. Infornation in it is used to produce Reports for People and Machi ne-Readable Reports. Saving this file will allow additional reports to be produced later without recal culation.

Because the Internedi ate Bi nary File (*.IBF) is not an ASQI file, it cannot be vi ewed in the View Reports Vindow or with a text editor.

Reports for People (*.RPT)

These reports present cal cul at val ues of plant components formatted with titles and col um headi ngs so people can understand them Each of the three reports (I ndi vi dual Plant, Pl ot Summary, and Stand Summary) can be requested when Generate Reports is sel ected from the Main Menu. They are all put in a file that, by default, has the same root as the Internedi ate Bi nary File, and an extensi on . RPT. The file can be gi ven a different root name. In the PI ot Summary and Stand Summary Reports, speci es are assi gned to the strata shown in Appendi x : Codes by using the Taxonomic Li f ef orm code from the Equation List File when this code is available. If you need nore details on assigning a lifeformto a species (nost users will not), see Appendix: Lifeform

individual Plant Report--

Thi s report lists up to five input paraneters (predictor variables) and the cal cul ated components for each input record (i ndi vi dual pl ant). Parameters with codes in capital letters were used in one or nore cal cul ation; paraneters with codes in lower case letters were not used in cal culations. When requested, an Indi vi dual Pl ant Report is generated for each pl ot within each stand in the Input Data File. Codes for the two "nost important" errors or warni ngs detected are Iisted next to indi vidual component val ues.

Plot Summary Report--

Thi s report gi ves averages of all input paraneters and the per-hectare val ues for components by species and by vegetation strata for each pl ot within each stand. For these numbers to be neani ngful, data for all plants in each pl ot must be contiguous in the Input Data File. This report is written after the I ndi vi dual Pl ant Report. The correct size and slope (if this pl ot needs slope correction) must be provided as di scussed under Ref erence: Desi gn a Run. A code for the "nost serious" error or warning detected is listed next to each val ue.

Stand Summary Report--

Thi s report gi ves averages and standard errors of all input parameters and the per-hectare val ues for each component by species and vegetation strata over all pl ots within each stand. For this to occur, data for all plants in each pl ot must be contiguous in the Input Data File and data for all plots within each stand must be contiguous in the Input Data File. Correct size and slope specifications are necessary as di scussed under Ref er ence: Desi gn a Run. These val ues are not wei ghted by pl ot areas. The "nost serious" error or warni ng
detected is listed next to each average val ue.

Information in Reports for People (*.RPT)--

Headings listed in parentheses can be changed by the user in the Data Input Fornat Window of Desi qn a Run.

- REQUESTED REPORTS: I ndi cates which of the reports for peopl e were requested and whether the output will be in netric or English units.
- TI TLE: Title gi ven to run in Cal cul ate Plant Components Vindow is shown at top of every page.
- MAXI MM EQUATI ON SELECTI ON PENALTY (ESP): Level set by user in Default Settings WIndow of Desi gn a Run.
- THRESHOLD LEVEL: Level set by user in Default Settings Window of Design a Run.
- SUMMATI ON LEVEL: Level set by user in Default Settings Window of Design a Run.
- DATA FILE: Input Data File specified in Calculate Plant Components Window
- RUN DESIGN FILE: Run Design File specified in Calculate Plant Components Vindow
- I BF FILE: Internedi ate Bi nary File specified in Calculate Plant Components VI ndow
- EQUATI ON LI BRARY: Equation Li brary (*. DBF) used to produce the Equation List File specified in Calculate Pl ant Components Window
- EQUATI ON LIST: Equation List File specified in Calculate Plant Components VI ndow
- (PLOT): Pl ot val ue from Input Data File.
- (STAND): Stand val ue from Input Data File.
- (LOCALE): Locale val ue from Input Data File.
- FIRST (PLANT ID): First Plant val ue in this Pl ot from Input Data File.
- (DATE): Fi rst Date val ue from Input Data File.
- Sl ope: Val ue for pl ot slope fromlnput Data File, or as specified by user in Default Settings Window of Design a Run.
- Area Conversi on Factor: Incorporates the effects of plot size and slope, with units I/area, so multiplication gi ves component val ues per hectare (or acre).
- Fi xed Pl ot Area Size: Val ue for pl ot area from Input Data File, or as specified by user in Default Settings Vindow of Design a Run.
- Prism Basal Area Factor: Val ue fromlnput Data File, or as specified by user in Default Settings Window of Design a Run.

Information in Individual Plant Report--

Headi ngs listed in parentheses can be changed by the user in the Data Input
Fornat-WIndow of Design a Run.

- CAS: Corresponds to the record number (case) of the Input Data File.
- (PLANT ID) : Pl ant identifier fromlnput Data File.
- LF: Lif ef orm code of plant.
- SPECIE: Species code of plants in Input Data File.
- PARAMETERS: Plant measurenents from Input Data File which were specified in Data Input Fornat V I' ndow of Design a Run.
- GA: Geographic Area code. Cones fromlnput Data File or Default Settings VIndow of Desi gn a Run.
- SS: Seral Stage code. Cones from Input Data File or Default Settings Vindow of Design a Run.
- (COMPONENTS) : Abbrevi ations for components requested for cal cul ation. Cones from the Bl OCODES file. The component estimates are reported. Codes for the tho nost serious errors, if any, are included.
- ERROR MESSAGES: Each of the error codes, indicated next to the component estimates, are defined here.

Information in Plot Summary Report--

- PLOT SUMMARY REPORT, (PLOT) = (pl ot-val ue):
- (PLOT): Pl ot val ue in Input Data File.
- LF: if ef orm codes of plants.
- SPECI E: Speci es codes of plants fromInput Data File.
- NUMBER PLANTS IN (PLOT): Number of plants in pl ot for a gi ven species and lifef orm
- PARAMETER(S) / (PAR1 . ..) / --AVERAGE--: Average val ue of the spec ified paraneter for a gi ven species and lifeform
- NUMBER OF PLANTS -- per (area) --: Cal cul ated number of plants per hectare (or acre).
- TREE BA (units) -- per (area) --: The tree basal area per hectare (or acre).
- (COMPONENTS) (units) -- per (area) --: Component estimates per hectare (or acre) for each component requested in the Components to aut put Vindow of Design a Run.

Information in Stand Summary Report--

@ STAND SUMMARY REPORT FOR (LOCALE) (l ocal e-name), (DATE) (dat e-val ue):

- (LOCALE): Locale val ue fromlnput Data File.
- (DATE): Date val ue fromlnput Data File.
- AVERAGES FOR (STAND) (stand- name), SAMPLE SIZE = (n):
- (STAND): Stand val ue fromlnput Data File.
- LF: Li f ef orm codes of plants.
- SPECI E: Speci es codes of plants fromlnput Data File.
- NUMBR PLNTS IN TALLY: Total number of plants in all plots for a gen species and lifeform
- NUMBR PLNTS PER (PLOT): Average number of plants per pl ot.
- PARAMETER(S)-- AVERAGE: Aver age of al I the measured val ues in the stand, not the average of the pl ot averages.
- NUMBER OF PLANTS -- per (area) --: Cal cul ated number of plants per hectare (or acre), not wei ghted by pl ot area.
- TREE BA (units) -- per (area) --: The tree basal area per hectare (or acre), not wei ghted by pl ot area.
- (COMPONENTS) (units) -- per (area) --: Average over all pl ots in the stand (per hectare or per acre) not wei ghted by pl ot area.
- STANDARD ERRORS FOR (STAND) (stand- name), SAMPLE SIZE $=(n)$: These are the standard errors corresponding to the averages above, except for:
- NUMBR PLNTS IN TALLY: Total number of plants in all plots for a given species and Iifeform
- A val ue of -1.0 indi cates the standard error could not be cal cul at ed because sample size was 0 or 1 .

Error codes--

Code(s) for the "nost important" error(s) or warning(s) are next to the cal cul ated val ues. Error rankings by importance are based on our consideration of a wide range of potential circunstances and will not reflect their importance for many particular circunstances. Definitions for error codes are at the end of the report and expl anations and possible sol utions are in Appendi x: Troubl eshooting: Error Messages.

Printing Reports for People--

Depending on the number of pl ant components requested, these reports may be nore than 80 characters across, and so mast be printed with narrow characters or on wi de paper or both. We suggest you print all BI OPAK reports on, conti nuous paper si nce page breaks and headi ngs occur only once at the top of each report, not every 60 or 80 lines.

Machine-Readable

These reports can be requested when Generate Reports is sel ected from the Main Menu. They contain several lines at the top specifying the variables and their col ums. These lines can be renoved with a text editor if needed for reading by other prograns.

Individual Plant Report (*.IND)--

It is put in a file with a root defined by you and a .IND extension. It contai ns al I the infornation in the I ndi vidual Plant Report for Peopl e; see the precedi ng section, Reports for People: I ndi vi dual Plant Report, for nore details.

Plot Summary Report (*.PLT)--

It is put in a file with a root defined by you and a. PLT extension. It contains all the information in the Pl ot Summary Report for People; see the preceding section, Reports for People: Pl ot Summary Report, for nore details.

Stand Summary Report (*.STA)--

It is put on a file with a root defined by you and an extensi on. STA It contains all the information in the Stand Summary Report for People; see the preceding section, Reports for People: Stand Summary Report, for nore details.

Information in Machine-Readable Reports--

The Iines of heading infornation at the tops of these reports specify, in order, the infornation in each fieldin the report. Sone of the codes in these Iines are defined in Reports for People: Information in Reports for People, above. Other codes i ncl ude:

- STRATA: Comminity Stratum for example, T, S, G, M (Tree, Shrub, Grass, Mbss, respecti vel y).
- SPP: Speci es codes of plants from Input Data File.
- BI Q CIR, COV, CR, DBA, DBH, FC, HT, LEN, NP, NMM SAP, SPA, VOL, WID: Paraneter codes.
- COMPONENTS: Three-character pl ant component codes.
- RECORDS: Number of records fromthe Input Data File that are summarized by thi s line.
- AREA (units): Pl ot area in (units).
- PRI SM (units): Prism factor in (units) for this plot.
- SLOPE: Sl ope of this plot.
- \# PLANT: Number of plants per unit area. Unit area is defi ned following AREA; see above.
- BA: Basal area of trees in the units requested ($\mathbf{m} /$ /ha or $\mathbf{f t 2 / a c) ~}$
- VSW BAE, BFT, AFT and nany ot hers: Three-character pl ant component codes.
- Pl otCnt: Number of pl ots in this Stand.
- TotPl nts: Total number of plants (that is, records) read from Input Data File summarized in this line.
- Pl nts: Number of pl ants per unit area, average or standard error.
- Av: Average. For paraneters this is the average over all observations of this paraneter. For plant components this is the average per unit area in the units requested, $/ \mathrm{m} 2$ or $/ \mathrm{ac}$.
- SE: Standard error (standard deviation of the nean). For paraneters this is the SE over all observations of this paraneter. For plant components this is the SE of the average per unit area in the units requested, $/ \mathrm{m} 2$ or /ac.

TUTORIALS

This chapter includes six tutorials that gradually introduce Bl OPAK features.
Section
70 Introduction to the Tutorials
70 The tutorial dataset
71 Lesson One--Introduction to Desi gn a Run and View Reports
Modify an Existing Run Design File
Modify Default Settings
Areal default settings
Equation Key defaul t settings
Equation Sel ection Penalty defaul t settings
Sel ect only Reassi gned speci es
Save changes to default settings
Modify Data Input Fornat
Mbdify Components to Output
Save changes to exi sting Run Design File
Make Run Desi gn Report
Vi ew Reports: vi ew a Run Desi gn Report
Example of Run Desi gn Report (TUTORI.RDR)
Exiting Bl OPAK
Lesson Tho--Introduction to Pl ant Component Cal culations and
Generating Reports
Cal cul ate Pl ant Components with Diagnostic Reports
Generate Reports
Vi ew Reports
Printing Reports
Printing a Report for People
Example of Reports for Peopl e (TUTORI.RPT)
Lesson Three--Introduction to Diagnostic Reports
Interpretation of Diagnostic Reports
Summarized Equation Use Report
Detailed Equation Use Report
Error Report
Printing output
Printing a Summarized Equation Use Report
Lesson Four--Introduction to Equation Li brary and Reassi gnnents
Edit Equation Li brary
Locate equation
Brouse equation
Modify an Existing Run Design (. RD) File
Mbdify Default Settings
Modify Reassi gnments
Save Run Desi gn changes
Lesson Fi ve-- Pl ant Component Cal culations with Reassi gnments
Cal cul ate Pl ant Components
85 Generate Reports
View Reports
86 Edit Equation Li brary
86 Resol ving the problem of two paraneters in one field

86 Resol ving the problem of no total bi onass equation
87 Exit Li brary Editor
88 Lesson Six--Editing the Equation Library
88 Viewing Documentation for an Equation
89 Sorting the Equation Li brary
89 Marking and savi ng equations
89 Making a new Equation Li brary (.DBF) and Equation List (.EQN)
89 Del eting narked equations and saving the renai nder
90 Creating text documentation of equations

Introduction to the Tutorials

The six tutorial s incl uded in the Bl OPAK users guide build on each other. Therefore, it would be best to start with Lesson One and work through to Lesson Six. If unfamiliar terns or concepts are encountered, refer to the appropriate section, Glossary, or Index of this users guide for further explanation.

For information on how to nake menu sel ections and sel ect files froma File Sel ection Window see Getting Started: Overvi ew of Features.

The steps in these tutorials are numbered and lettered sequentially from begi nning to end because they must be done sequentially. Numbering and lettering do not start over with each subsection.

The Tutorial Dataset

For all the tutorials, we will use a gi ven Input Data File (TUTOR. DAT). The data were collected froma riparian pl ot in a stand of trees in the Mack Creek drai nage found within the HJ. Andrews Experimental Forest. For the purposes of this tutorial, assume that as part of a long-termstudy on site producti vity, estimates of standing bi omass are needed.

Here are sone lines of data from the Input Data File:

Thi s particular dataset has 61 characters per line. Col ums 1-6 are the code for the research site. Col ums $\mathbf{7 - 1 0}$ represent the nane of the stand of trees. Col ums 11-18 indi cate the particul ar pl ot within the stand from whi ch the data were collected. Col ums 19-24 show the date the neasurenents were taken. The pl ant speci es codes are found in col ums $\mathbf{2 5 - 2 8}$, and the pl ant ID numbers are found in fiel ds 29-32. The renai ni ng numbers to the right of the plant ID are the val ues for measured paraneters; for example, d.b.h and d.b.a.

Lesson One--Introduction to Design a Run and View Reports

In this lesson you will:

- Use Desi gn a Run to modify a gi ven Run Desi gn File (TUTOR. RD). Sect ions i nvol ved:
- Defaul t Settings
- Dat a I nput Fornat
- Components to Output
- Save Run Desi gn File as a different file name (TUTORI.RD).
- Save Run Desi gn Report (TUTORI. RDR) to be vi ewed later.
- Choose View reports from the Main Menu.
- See how files are sel ected and vi ewed.
- View the Run Desi gn Report (TUTORI.RDR).

1. Go to the TESTDATA di rectory where the tutorial files are located. Type: BI OPAK (If you are on a network system you will need to type BI OPAKN D: where "D" represents the temporary di rectory. See Installation: Installation on a Network.)

Modify an Existing Run Design File

2. Select Desi gn a run at the Mai n Menu.
3. Sel ect File from the Run Design Menu.
a. Then sel ect Read exi sting run desi gn file fromthe File Menu. A \& Sel ection Window will appear. Functioning of the FoxPro windows for selecting an existing file (like this window) and opening a new file are described in Getting Started: File Sel ection Wi ndows.
b. Now sel ect the file TUTOR. RD by highlighting it then pressing <Enter>. Press \&sc> and the File Menu will disappear and the screen will return to the Run Design Menu. The sel ected file will show up as the current file at the bottom of the screen.

Modify Default Settings--

4. Sel ect Default settings. This editing window allows you to add the default val ues you want to use in cal culating plant components. Tab keys nove bet ween fiel ds.

Areal default settings--

You can specify the def aul \mathbf{t} val ues for either Fixed Pl ot Area or Prism Basal Area Factor, but NOT both.
a. Fixed Pl ot Area: If pl ot size were not included in your Input Data File, the size of your fixed pl ots areas hould now have to be specified. If plot size is in your Input Data File but is missing in sone records, this would be the val ue used to repl ace the missing val ues.
Type: 2
b. Units: Specify the units associ ated with the plot area. The <flO> key will display a list you can sel ect from
Type: ha (or sel ect from Iist)
c. Prism Basal Area Factor: This is where you would specify the prism
basal area factor used to tally trees in sample.
Type: <Tab>
d. Units: This is where you would specify the units associ ated with the orism basal area factor.
Type: <Tab>
e. Pl ot Sl ope Correction: Specify the slope to be used if it. was not i ncl uded in your Input Data File. This reference stand has a projected area of 2 hectares..
Type: 0
f. Units: Specify the units to be associated with the slope. The $\mathbb{C l O}$ key will display a list you can sel ect from Type: \% (or sel ect fromlist)

Equation Kev default settings--

g. Geographic Area default: Here you may sel ect a code for the geographic area of the data to be used. The def ault code is 〈blank>. The Geographic Area code sel ected for the TUTOR. RD file was \mathbf{W} (nest side of the Cascades).
Type: <Tab>
h. Seral Stage default: Here you choose the seral stage of the data to be used. The def ault code is 〈blank>. The Seral Stage code sel ected in TUTOR. RD was 0 (ol dgrouth).
Type: <Tab>

Equation Selection Penalty default settings--

The ESP I evel s must be incl uded, ot herwi se BI OPAK cannot sel ect equations from the Li brary.
i. Maxi mum ESP Level: This determines the poorest but still acceptable equation match (that is, hi ghest acceptable ESP). For Bl OPAK to have as much flexibility as possible in sel ecting an equation, you would sel ect a high number. (See Appendix: Equation Sel ection Penalties for a more detailed description.) The def ault val ue, 79999, was sel ected in TUTOR. RD.
Type: <Tab>
j. Threshol d ESP Level: This val ue determines the level at whi ch a Candi date Equation is consi dered acceptable. An assi gned Threshol d ESP of zero will assure sel ection of the best equations. Zero was the val ue sel ected for TUTOR. RD.
Type: <Tab>
k. Summati on ESP Level: If BI OPAK cannot find an indi vidual equation to cal cul ate a specified pl ant component with a lower ESP val ue than the assi gned Summation ESP, it will begin to consider def aul t equation summation (see figures 2-4). If no equation summation is found that has an ESP val ue less than the Threshold ESP, the summation with the next hi ghest val ue is sel ected. Zero was the val ue sel ected for TUTOR.RD.
Type: <Tab>

Select only Reassigned species--

1. If \mathbf{Y} is sel ected, BI OPAK perforns computations onl y on those speci es specified in Equation Reassi gnnents (see lesson four). The def ault setting is $\mathbf{N}(\mathbf{N o})$, the option sel ected for TUTOR. RD.
Type: <Tab>

Save changes to default settings--

$m \quad$ To save the changes to the Default Settings, press $\langle C t r l-S\rangle$. You will be returned to the Run Desi gn Menu.

Modify Data Input Format--

5. Sel ect Data Input Format fromthe Run Desi gn Menu. A list of input variables, their units and the variable infornation al ready entered will appear. Thi s section of the programis where you tell BI OPAK how to find certain variables, and other important information in your data file, needed for cal cul ation and output of reports.
a. To start, \&DAAr rows to the second variable, named "LOCALE."
b. Now you are ready to add inf ornation.
(1) Var Nane: Nane used to identify this variable in output reports. For the first five variables, this name can be changed. (The next col um, Label / Description can never be changed and is only for descriptive purposes.)
Type: Basin
(2) Units: This is not rel evant for this variable, therefore the cursor will skip over this col um.
(3) Type: Data Type is required for variables $10-27$ onl y: I = integer, $\bar{F}=\mathrm{floating}$ point (real), and $E=$ exponential format. Other variables are character strings (A). Not applicable for this variable, therefore, cursor will skip over this col um.
(4) pos: (required) Indicates first col um position of variable in Input Data File.

Type: 1

(5) Len: (requi red) Total number of col ums occupi ed by the particular data field (naxi mumis 6 for species, prism basal area factor, and pl ot sl ope correction; 8 for date, locale, stand, pl ot and plant ID; and 10 for all others).
Type: 6
(6) Dec: Number of deci nal places in an F or E data type (any deci nal point occurring in the data input record as a missing val ue will override this default). Not applicable for this variable, therefore, cursor will skip over this col um.
(7) Mssing: I ndi cates how missing data are represented for this variable.
Type: <Tab> (l eave blank)
c. After the information for the input variable has been entered, press <Ctrl-S> to save the additions and exit Data Input Fornat. You will be returned to the Run Desi gn Menu.

Modify Components to Output--

6. Sel ect Components to Output. Notice that the plant component "BAT Bi omass, aboveground, total" has been specified for output. For all species in the tree and shrub strata, the BAT cal cul ation will be at tempted.

There are tuo ways to enter components. You can either type in the Component codes, if you know them or sel ect themfromthe code list as fol I ous:
a. Mbve the highlight bar to the blank line bel ow BAT. Press $<\mathrm{Fl} \boldsymbol{\mathrm { O }}$ for a list of Component codes. Mbve up and down by using either the arrow keys or the nouse.
b. Move highlight bar to BFT. Select by pressing Enter>. You will be returned to the Component to Output Window Notice that BFT has been entered under the headi ing Code.
c. Choose strata to be computed for BFT. Put a Y in the T (tree) col um, and a Yin the S (shrub) col um so that total foliar bi omass will be cal cul ated onl y for trees, shrubs, and coppice lifeforns. An Nin both the \underline{H} (herb) and \underline{M} (noss) col ums will prevent cal cul ation of BFT for lifeforns in these strata.
d. Press <Ctrl-S> to exit and save additions.

Save changes to existing Run Design File--
7. Now to save the changes to the Run Design File, select File.
a. Sel ect Save run design file. A File Selection Window will appear, thereby allowing you to rename the file.
b. Nane the file TUTORI. It will be gi ven the extensi on. RD. Now <TAB> to the <Save> option and press 《Enter>. You will be returned to the File Menu.

Make Run Design Report--

8. Sel ect run Desi gn report to save the run specifications in a report format (ASCl). A File Sel ection Window will appear and you will be prompted to name the file. Ve suggest TUTOR1 so it is identified with the TUTORI. RD file it represents. It will be gi ven the extension. RDR. After saving this, press \&sc> to return to the Run Desi gn Menu.
9. To exit the Run Design Menu, sel ect Exit run design. You will be returned to the Main Menu.

View Reports: view a Run Design Report

10. Sel ect View Reports fromthe Main Menu. A View Reports Window will be di spl ayed.
a. Move the hi ghl ight bar down to the line under Pl ant data (it should currently either say NONE or show the Input Data File name). Sel ect this by either pressing <enter>or clicking it with the nouse. A File Sel ection Vindow will appear. Press <TAB> to get to the file box and Scroll>the hi ghlight bar to the newly created. RDR file, then either press <Enter> or <Tab> and sel ect <Qpen>. You will be returned to the View Reports VIndow
b. Move the highlight bar up to Plant data. Select it by pressing Enter> and the Run Design Report will appear for vi ewi ng.
c. BI OPAK uses LIST, shareware, for viewing files. When in LIST, type H to see the hel p screen.

Example of Run Design Report (TUTOR1.RDR)

11. The sections of the Run Design Report are numbered I-4. Each represents a section of Design a Run; that is, Default Settings, Data Input Fornat, Components to Output, and Reassignments. Entries made in these sections of Design a Run will be reported here. When you are done vi ewing the report press X to return to the View Reports Vindow Press EsC> to return to the Mai n Menu. Pl ant component calculations now can be made.

(today's date)
Run Design Report for File D: \BIOPAK\TESTDATA\TUTOR1.RD

1. Default Settings of File

Maximum Equation Selection Penalty	79999
Threshold Equation Selection Penalty	0
\quad Equation Selection	Penalty
Select Species	0
Geographic Area default	N
Seral Stage default	W
Fixed Plot Area	0
Plot Units	2
Prism Basal Area Factor	ha
Prism Basal Units	
Fixed Plot Slope	0
Fixed Plot Units	

2. Data Input Format Specification

Variable Name	Label/Description	Units	Type	Pos	Len	Dec	Mis
YEAR	Date		A	19	2		
BASIN	Locale		A	1	6		
STAND	Stand		A	7	4		
PLOT	Plot		A	11	8		
TREE \#	Plant ID		A	29	4		
SPECIES	Species		A	25	4		
			A				
GEO AREA	Geographic Area		A				
SERSTAGE	Seral Stage		A				
810	Biomass		F				
CIR	Circumference		F				
COV	Cover		F				
CR	Crown ratio		F				
DBA	Diameter near base		F				
DBH	Diameter breast height	cm	F	43	5	1	
FC	Form Class		F				
HT	Height	m	F	49	5	1	
LEN	Length		F				
NP	Number of plants		F				
NUM	Number fronds, stems		F				
SAP	radial thickness		F				
SPA	x-sect area		F				
	Volume		F				
	Width		F				
	Fixed plot area		F				
PRISMFAC	Prism basal area factor		F				
PLTSLOPE	Plot slope correction		F				

3. Component Values to Output

4. Reassignments
*** No reassignments exist ***

Exiting

From the View Reports Window press <Esc> to return to the Main Menu. From there press \mathbf{Q} to quit. You will be asked if you want to erase the $C: \backslash B I O E N V$ error check file. You can erase it since it does not concern you at this point.

Lesson Two--Introduction to Plant Component Calculations and Generating Reports

In this lesson you will:

- Use the gi ven Equation List File (BI OLIB. EQN)
- Use Run Desi gn File previ ously created (TUTORI.RD)
- Cal cul ate some pl ant components
- Name the run
- Sel ect files to be used for cal culations
- Nane the Internedi ate Bi nary File (TUTORI.IBF)
- Produce Di agnostic Reports (TUTORI. USE, TUTORI.DET, TUTORI.ERR)
- Use Generate Reports
- Reports for Peopl e (TUTORI.RPT)
- Vi ew reports
- Reports for Peopl e

Calculate Plant Components with Diagnostic Reports

1. Sel ect Cal cul ate pl ant components from the Main Menu. The Cal culate Plant Components VIndow will appear. Now you will be able to give a title to this particular run, sel ect the files to be used in the cal culations, nane the Internedi ate Bi nary File, and select the Diagnostic Reports to be produced.
a. The highlight bar should appear on the first line with the heading Title. Select this by pressing Enter>. You will be able to give a title to this particular run; for example, "Test run from Tutorial : Lesson Two." After naming the run, press \&Enter>.
b. If the newly created Run Desi gn File (TUTORI. RD) is not shown on the Cal cul ate Plant Components Vindow, nove the highlight bar to the Ii ne titled Run design file and press <Enter>. A File Sel ection Window will appear where the Run Design File to be used for the cal cul ations can be sel ected. Sel ect TUTORI.RD The file TUTOR.RD will now appear in the Cal cul ate PI ant Components Window
c. Now nove the highlight bar to Equation list file. Sel ect file BI OLI B. EQN usi ng the File Sel ection Window as you sel ected TUTOR. RD. This will supply the equations to be used for the cal culations.
d. To sel ect the I nput Data File to be used in the cal cul ations, nove the hi ghlight bar to input Data file, and select the file TUTOR. DAT, as descri bed above.
e. By executing the cal culations, an Internedi ate Bi nary File (*.IBF) will be produced. To name this output file, move the highlight bar to the line titled Internediate bi nary file and press \&nter>. A File Sel ection Window will appear where you can nane the.IBF file. We suggest TUTORI.IBF. Then, sel ect SSave>.
f. Bel ow the Internedi ate Bi nary File name, sel ect each of the Diagnostic Reports to be generated by noving the cursor to each line and pressing Enter> to toggle the YES option.
g. Now that you have named all the rel evant files, sel ect <Go> to execute the cal cul ations.

Generate Reports

2. Sel ect Generate reports. By default, the files listed are gi ven the same root name as the. IBF. You can change these names by highlighting the file nane and pressing \&nter>. A File Selection Vindow will appear thereby allowing you to rename the file.
a. Under the heading Reoorts for People, sel ect the three reports either by highlighting each Iine and pressing \&nter> or by using the rel evant hot key--this will toggle the Yes/ No sel ection to the YES position. The nachi ne-readable reports can be generated at a later tine.
b. Toggle the metric/English option for report out put by either pressing Enter > or usi ng the 0 hot key. Sel ect METRI C.
c. Now sel ect <Go> to generate the specified reports.

View Reports

3. Sel ect View Reports or data from the Main Menu. The files that have recently been generated will appear as the file names under each headi ng. In the case of the plant data (or DOS text file), the Input Data File used in the cal culations should be the file that appears.
a. While the highlight bar is on the first line, titled Reports for People, press \&nter> to vi ew this report.
b. By scanning the Reports for People, which incl udes an Indi vidual Pl ant Report, Pl ot Summary Report, and Stand Summary Report, notice that there were no BAT val ues cal culated for the Speci es codes CONJ (Cornus nuttalli, Pacific dognood) and TABR (Taxus brevifolia, Pacific yew). The error codes indi cate that TABR was not found in the Equation Library. For CON, the specific equation requested is not in the Li brary. For further investigation, brouse the Diagnostic Reports (TUTORI. USE, TUTORI.DET, TUTORI.ERR), whi ch were generated when you cal cul ated pl ant components.
c. Press X when you are done viewing a file and you will be returned to the View Reports Wíndow

Printing Reports

4. Exit Bl OPAK from the Main Menu. Al Bl OPAK output must be printed from within a text editor or nord processor, or with the DOS PRINT command or another printing utility because Bl OPAK does not print files. Al printable BI OPAK files are flat ASCII files except for the formfeed character at the tops of pages. You may want to print all BI OPAK reports on conti nuous paper because page breaks and headi ngs occur onl y once at the top of each report, not every 60 or 80 lines.

Printing a Report for People--

5. If you choose, print the file TUTORI.RPT on a printer or with a font that can print at least 132 characters per Iine and that is not proportionally spaced.

Example of Reports for People (TUTOR1.RPT)

To save space, nost cases (records) from the Input Data File are not included in the I ndi vi dual PI ant Report bel ow

Requested reports: Individual Plant, Plot Summary, Stand Summary in metric units

USER TITLE: Test run for tutorial, Lesson Two
Biomass values calculated on 04/19/94 at 12.24.14

Max. Equation Selection Penalty (ESP) = 79999	Data File $=$ Run Design File (.RD)	D: \BIOPAK \TUTOR\TUTOR.DAT D: \BIOPAK\TUTOR\TUTOR.RD
Threshold Level $=0$	Intermed. Bin. File (.IBF) =	D: \BIOPAK TTUTOR\TUTOR.IBF
Summation Level $=0$	Equation Library (.DBF) =	D: \BIOPAK \BIOL \BIOLIB8.DBF
	Equation List (.EQN) =	D: \BIOPAK\TUTOR\TUTOR.EQ

TITLE: Test run for tutorial, Lesson Two Page 2

15478	T TSHE	18.3DBH	590.0ht	Wo	7814.10	131604.80
25477	T TSHE	44.9 DBH	2110.0ht	W0	52767.14	1287830.
3467	T TSHE	41.8 DBH	2340.0 ht	W 0	45315.46	1085451
45481	T TSHE	20.3DBH	1130.0ht	W0	9743.94	171625.00
55479	T THPL	8.5DBH	320.0HT	W 0	7754.90h	17781.74h
6469	TABR	5.7 dbh	300.0ht	W 0	. 000 CM	M . OOCM
7463	S CONU	5.8 dbh	710.0ht	W0		OOMN .OOMN
85480	TABR	7.2 dbh	430.0ht	W 0		OOCM . OOCM
9468	T ACMA	9.408 H	1480.0ht	W 0	867.82	22487.61
研	T ACMA	24.20BH	,		4004.17	257186.60

$==/ \backslash / \backslash M==$ cases 2-75 would be included here $==/ \backslash \backslash / \backslash \backslash / \backslash==$

765569	T TSHE	12.0DBH	-540.0ht W 0	3183.32h	45052.95h
775191	T TSHE	43.5DBH	2030.0ht W O	49327.42	1193603.
78474	T ACMA	6.7DBH	890.0ht W	501.93h	9715.

Error messages:
C NO EST: No LF in data. No Reass w/ match spp, GA \& SS. Spp not in .EQN file.
M NO EST: One or more parameters are missing for all candidate equations.
N NO EST: No match for Request to Lib in .EQN since Spp/LF/Comp not found at any ESP.
\checkmark WARNING: Over extrapolation occurred.
c WARNING: Equation used lacks parameter range, so no extrapolation test was done.
h WARNING: Under extrapolation occurred.

$\underset{\mathrm{F}}{\mathrm{~L}} \text { Specie }$	Number Plants in RIPPLO	Para DBH -ave	$\begin{gathered} \text { neter }(s) \\ H T \\ \text { age----- } \end{gathered}$	Number of plants	Tree BA (m2) - per	$\begin{gathered} \text { BI O TOT } \\ \text { FOLIAGE } \\ (\mathrm{kg}) \\ \text { hectare. } \end{gathered}$	BIO TOT ABOVGRND (kg)
TABR	3	9.4	453.3	2	0	. 000 C	OOC
All	3	9.4	453.3	2	0	. 00	00
T ACMA	7	15.2	1352.0	4	. 1	8.56 V	700.36 V

T PSME	5	148.3	6212.0	3	4.4	519.94	54110.07 V
T THPL	16	54.5	2554.4	8	3.3	7473.59 V	31532.84 V
T TSHE	45	39.6	2172.2	23	4.4	6987.88 c	48784.12 V
T All	73	48.0	2485.1	37	12.3	14989.98	135127.40
S CONU	2	7.1	830.0	1	.0	.00 M	.00 M
S All	2	7.1	830.0	1	.0	.00	.00
Grand Tot	78	45.4	2361.3	39	12.3	14989.98	135127.40

NOTE:

In this case val ues in the Stand Summary Report (not shown) are the same as in the Pl ot Summary Report because the data are for one plot.

Lesson Three--Introduction to Diagnostic Reports

In this lesson you will:

- Use Di agnostic Reports generated in Cal cul ate Pl ant Components (TUTORI. USE, TUTORI.DET, TUTOR.ERR)
- Vi ew reports
- Summarized Equation Use Report (TUTORI. USE)
- Detailed Equation Use Report (TUTORI. DET)
- Error Report (TUTORI.ERR)

In the previ ous tutorial, we found that the specified pl ant components were not cal cul ated for two speci es in the Input Data File-CONU and TABR. We will now vi ew the Di agnostic Reports to determine the reasons for this omission. Use the <RtArrou» key to see the portions of the reports that are of f the screen.

Interpretation of Diagnostic Reports

1. Sel ect Vi ew reports or data from the Mai n Menu. Reference: Reports and Ot her Out put contai ns nore compl ete infor nation on each report.
a. Under the headi ng Diagnostic Reports, the three di agnostic reports generated when we cal cul at ed pl ant components in Lesson Two shoul d be shown (TUTOR. USE, TUTORI.DET, TUTORI.ERR).

Summarized Equation Use Report--

b. Sel ect Summarized equation use report. TUTORI. USE will appear on the screen. A summary of the equations used to cal cul ate each component for each speci es will be di spl ayed. This is the nost usef ul di agnostic report. For all speci es where calculations were possible in this run, nore than one equati on (or summation) was used to cal cul ate BAT. The Use Count col um shows that no records for CONU or TABR were used in cal cul ations. The NoCal Count col um i ndi cates how many records were not used (no cal culations). Nbte that in the Equation(s) Actual lv Used col um, CONU and TABR are blank. When nore than one Equation Key is present under Equation(s) Actuallv Used, the val ues fromeach of these equations were sumed to estimate the val ue for the Origi nal Request. Press X to return to the View Reports W^{\prime} ndow

Detailed Equation Use Report--

c. Sel ect Detailed equation use report. This report di splays every equati on used to cal cul ate BAT for each of the 78 records in the Input Data File. The Original Equation Request (explai ned nore fully in Appendi x : Sel ecting Equations and Summati ons) for TABR, does not incl ude a lifeform or component because these could not be found in the Equation Li brary. The Geographic Area and Seral Stage codes were found in the Def ault Settings which we nodified in Tut orial: Lesson One. The Oriqinal Request for CONU is complete, thereby indicating that there are equations in the Li brary for this species. For some species, for example ACMA, sone of the Equations Actual ly Used were summations. an equation does not exist for a specified component, a summation of I esser components will be attempted within the user-specified ESP constraints (see Appendix: Selecting Equations and Summations). Press X to return to the View Reports Window

Error Report--

d. Sel ect Error report. This report includes the errors associated with attempts to cal culate components for each Iine of data in the Input Data File. For the speci es TABR, the codes indi cate that the speci es is not in the Li brary (see Appendix: Troubl eshooting: Error Messages). For CONU, the error code indicates that the specific equation requested is not in the Library. Press X to return to the View Reports Vindow e. Press 区sc> to return to the Main Menu.

Printing output

2. Exit Bl OPAK from the Main Menu. Al Bl OPAK output must be printed from within a text editor or word processor or with the DOS PRINT command or another printing utility because BI OPAK does not print files. Al printable BI OPAK files are flat ASCl files except for the form feed character at the top of pages.

Printing a Summarized Equation Use Report--

3. Print the file TUTORI. USE on a printer or with a font that can print at least 132 characters per line and that is not proportionally spaced. Other diagnostic reports can be printed in this way.

Lesson Four--Introduction to Equation Library and Reassignments

In this lesson you will:

- Use the gi ven Equati on List File (BI OLIB. EQN)
- Edit Equation Li brary (BI OLI B. DBF)
- Locate equations, Equation key
- Brouse equations
- Modify the Run Desi gn File (TUTOR1.RD)
- Mbdify default settings
- Reassi gnnents
- Save Run Desi gn File as new nane (TUTOR2.RD)

In the previ ous tutorials, we found that the specified plant components were not cal cul ated for two speci es in the Input Data File-CONU and TABR. We will now use the Equati on Li brary to locate the equations for CON. Because the error codes in Reports for People indicated that there are no equations for TABR, we have deci ded to substitute equations for TSFE (Tsuoa heterophv/la, uestern henlock). In a real application you could choose a different species. We will theref ore locate the equations in the Library for TSFE to see if they are appropriate.

Edit Equation Library

1. Sel ect edit equation Li brary-from the Main Menu.
a. Sel ect File fromthe Edit Li brary Menu.
b. Sel ect Retrieve from the File Menu. A File Selection Window will appear. Sel ect BI OLIB. DBF from the list of . DBF files in the box. (If BI Cll B. DBF does not show up in your current directory, sel ect the first line in the file box, [..], the parent directory. This will nove you up to the next hi gher di rectory. From there, sel ect the di rectory your Equation Li brary database was installed in.) It will take a while for BI OPAK to copy the Equation Li brary.

Locate equation--

c. When the Li brary has been copi ed, sel ect Locate equations(s) fromthe Edit Li brary Menu. Then sel ect equation Key, from the Locate Menu. The cursor will appear under the headi ng Spp (Species). Type in CONU. The first equation for CONU will be seen at the top of the list. Unneeded li nes have been cut fromthe following screen for brevity.

Abstract

Notice that all CONU equations are for Iifef orm K (coppice). Because BI OPAK will not substitute lifef orm-unl ess specified by you-these equations were not used. The equations are al so for Geographic Area W (nest si de of the Cascades) and Seral. Stage E (Early). BI OPAK nould have substituted this Geographic Area and Seral Stage, gi ven the ESP constraints you had specified in Default Settings, if the lifeform had been correct. Although the Mack Creek dat aset (TUTOR. DAT) is from an ol d-grouth stand, we have deci ded to use these equations for CONJ in this tutorial. Equations for noncoppice shrubs uould certainly be nore appropriate. For BI OPAK to substitute these equations, however, the coppice lifeform will need to be specified in an equation reassignment.

Browse equation--

d. <Backspace> over CONU. Still using the Equation Key, type in TSFE. There are several equations for TSFE, many of which would be appropriate for our cal culations. Press \&nter> to terminate the Equation Key search, and then sel ect Quit. You will be returned to the Edit Li brary Menu. To brouse through the Li brary, either sel ect Brouse equation(s), or press $\langle\mathrm{FlO}$ to toggle the Menu off. By using the arrow keys, or <PgDn>, you can scroll through the equations.
e. To view nore detailed documentation, hi ghl ight the equation summary line and type <Enter> to go to the View Mbdifv Window From here <PgDn> and <PgUp> show documentation for this equation. When fini shed vi ewing, <PgUp> until you reach the Brouse Equations Vindow
f. To exit the Equation Library Editor, press $\langle\mathcal{F l O >}$ to toggle the Menu on. Then sel ect Exit Iibrary editor. If no changes have been made to the Li brary, you will be returned to the Main Menu (unl ess you sel ected View or modify equation and saved by using $\langle\mathrm{Pg}\langle\mathrm{p}\rangle$).

Modify an Existing Run Design (.RD) File

2. Sel ect Design a run at the Main Menu.
a. Sel ect File from the Run Design Menu.
b. Sel ect Read existing run design file fromthe File Menu. A File Selection Window will appear. Use the Drive Box and Directory Box to go to the di rectory where you stored TUTORI i RD. Hi ghl i ght TUTORI. RD and press Enter>. You will return to the File Menu. Press Esc> and the - program will return to the Run Design Menu, and the sel ected file will appear as the current file at the bottom of the screen.

Modify Default Settings--

3. Sel ect Default Settings fromthe Run Design Menu. This editing window allows you to nodify the default val ues in BI OPAK that were used in cal culating pl ant components.
a. Use <Tab> to get through the cells in the window to the last line, Sel ect Only Reassi qned Speci es?
Type: Y
b. Press $\langle\mathrm{Ctrl}-\mathrm{S}\rangle$ to save the change and exit to the Run Desi gn Menu.

Modify Reassignments--

4. Sel ect Reassi gnnents at the Run Desi gn Menu. You will be in a Reassignment Summary 1 indow
a. To add a reassi gnnent:

Type: <Ent er>.

A Reassi gnment Add／Mbdify Vivndow will appear which al I ows you to enter
the reassignment criteria and substitution information．
b．In the first data entry field，following the heading Criteria，enter the Speci es code for Pacific doguood：
Type：CONU．
The rest of the reassi gnnent criteria can be left blank because we are pl anning to reassign all occurrences of CON，not sel ected ones that fit gi ven parameters．
c．＜Tab＞to the bottom hal f of the screen．Under the heading Substitutions，again enter the Species code in the first col um：
Type：CONU．
In the second col um，
Type：K（or sel ect from $<\mathbf{F l O} O$ Iist）
This represents the coppice lifeform The rest of the Substitution Key can be left blank．
d．Now for the species CONU，BI OPAK will substitute the equations in the Li brary with the coppice lifeform That resol ves the CONJ problem Press＜Ctrl．－S＞to save changes and return to the Reassignment Summary VI ndow Now for TABR．
e．To add another reassi qnment，with the cursor on a blank line in the Reassi onnent Summary Window press 《Enter＞．
f．In the Criteria Box enter the Speci es code to be reassi gned：
Type：TABR
g In the Substitution Key，enter the species nane：
Type：＇TSFE．
h．Now for all occurrences of the speci es TABR in the Input Data File， equations for the species TSHE will be substituted．Press＜Ctrl－S＞to save the new reassi gnnent and return to the Reassi qnment Summary ${ }^{\boldsymbol{T}}$ ndow Press 〈Ctrl－S＞again to save all changes to Equation Reassi gnnents and return to the Run Design Menu．

Save Run Design changes－－

5．To save the changes made to the Run Design File，sel ect File fromthe Run Design Menu．Then sel ect Save．Nane the file TUTOR2．It will be gi ven the extensi on ．RD．

6．To save the information in the Run Design File in an easily understood format，sel ect run Desi gn report．A File Sel ection Window will appear and will prompt you to name the file．It will be gi ven the extensi on ．RDR． We suggest nam ng the file TUTOR2 so it is identified with the TUTOR2．RD file it represents．Then press Esc＞to return to the Run Design Menu．

7．To exit the Run Design Menu，sel ect Exit run design and press 《Enter＞． You will be returned to the Main Menu．

Lesson Five--Plant Component Calculations with Reassignments

In this lesson you will:

- Use the gi ven Equation List File (Bl OLIB. EQN)
- Use nodi fied Run Desi gn File (TUTOR2. RD)
- Cal cul ate Pl ant Components
- Generate Reports
- Reports for Peopl e
- Vi ew Reports
- Run Desi gn Report (TUTOR2. RDR)
- Reports for Peopl e (TUTOR2. RPT)
- Di agnosti c Reports (TUTOR2. USE, TUTOR2. DET, TUTOR2, ERR)
- Use Equation Li brary Editor
- Locate equations
- Browse equations

Calculate Plant Components

1. Sel ect Cal cul ate pl ant components fromthe Main Menu. You will be shown a

Cal cul ate Pl ant Components \mathbf{V} ndow
a. Give a new title to this run, for example, "Second Run, w CONU and TABR Reassi gnments. "
b. Sel ect TUTOR2. RD as the Run Design File, if it is not al ready shown. If BI OLIB. EQN is not selected as the Equation List File, select it now
d: Verify that TUTOR. DAT is the Input Data File.
e. Name the Internedi ate Bi nary File: TUTOR2. I BF.
f. If N appears next to the names of the Diagnostic Reports, toggle on the Y options to sel ect all reports.
g. Sel ect $<G O\rangle$ to execute the cal cul ations.

Generate Reports

2. Sel ect Generate reports. A Generate Reports Vindow will appear. If all three reports under Reports for People are toggled Y (Yes), sel ect <GO> to generate the reports, otherwise toggle the reports to the \mathbf{Y} selection bef ore executing <GOs.

View Reports

3 Sel ect View reports. View the Reports for People and Diagnostic Reports, as described in earlier tutorials.
a. Reports for People and the Summarized Equation Use Report show that the component cal culations for speci es TABR were executed by using equations for the speci es TSFE, as you specified in the Equation Reassi gnment.
b. Component cal cul ations for the species CON, however, still were not executed. We will check to see whether we overl ooked sonething regarding CONU in the Equation Li brary.

Edit Equation Library

4. Sel ect edit equation Li brary fromthe Main Menu. At the Edit Li brary Menu:
a. Sel ect File.
b. Sel ect Retrieve. Again sel ect the file BIOLB.DBF from the list of .DBF files.
c. Sel ect Locate equations(s), then sel ect equation Key. Type in CONU. Then press \&Enter> and Quit from Locate Equations Menu. Press \&sc> or $\langle\mathrm{FIO}$, to renove the Edit Li brary Menu.
d. You can view the docunentation for the equation summarized on the hi ghl ighted Iine by pressing <Enter> or sel ecting Vi ew nodify equation from the Edit Li brary Menu. The three pages of docunentation are fairly self-explanatory and are fully described in Reference: library Editor.

Resolving the problem of two parameters in one

e. We will now examine the inf ornation more closel y. All equations for the speci es CONU use DBA as one of the parameters. In our Input Data File, DBA and DBH occupy the same data fields. We did not specify DBA in the Data Input Fornat VIndow of Desi gn a Run. Therefore, because BI OPAK cannot read the DBA fromthe data, it cannot use the CONU equations in the Library. Two approaches are possible to resol ve this probl em
f. You can nodify the Input Data File by using a text editor or data management programto nove the val ues for DBA to different data fiel ds than those for DBH We recommend this approach because it avoids possi ble errors.
g. Another way, NOT usually recomended, is to specify DBA as being in the same Iocation as DBH in the Data Input Fornat. Care is needed, however, because a serious problem nay occur. There are many species in the Li brary that have sone equations using DBA and others using DBH Take PSME, for example. If the data you collected are for the DBH of PSME, and if both parameters are specified as being in the same data field, when BI OPAK encounters equations usi ng DBA, it may use these thi nki ng that DBA was a neasured paraneter. BI OPAK then will use the DBH val ues in your Input Data File as DBA val ues in its cal culations. Such potential errors can be avoi ded if you create a new Equation Li brary for the Input Data File, in which all equations are del eted that use parameters not measured. In other words, if you neasured the DBH of THPL, del ete all equations for THPL having DBA as a parameter; if you neasured the DBA of PSME, del ete all equations with DBH as a parameter; and so on for all species with equations using either paraneter.
h. We will not step through either approach, but leave the choice and i mpl enentation to the user as an additional learning experi ence.

Resolving the problem of no total biomass equation

i. Al so, notice that for the species CONU, there are no equations for the pl ant component BAT. If you bel ieve several existing component equations in the Li brary would be a reasonable estinate of BAT if summed, you canspecify that a summation be done in Equation Reassi gnnents (for details see Appendi x: Sel ecting Equations and Summations). To do this, while in the Substitution Key, specify speci es CONU, lifeformK, and one of the components froma CONU equation
in the Li brary. Bel ow this first line in the Substitution Key, continue to list the species, lifeform and other components to be used in the summation.

Exit Library Editor

j. If you are not in the Eouation Summary Vindow press \&sc> one to three times to return to this window If the Edit Li brary Menu is not shown, toggle it on by pressing Fl O. Sel ect Exit to return to the Main Menu.

Lesson Six--Editing the Equation Library

In this lesson you will:

- Use gi ven Equati on Li brary (Bl OLI B. DBF and BI OLI B. FPT)
- Sort equations
- Mark equations
- Save subset of equations as new Equation Library
- Save Equation Li brary as database file (*. DBF)
- Save Equation Li brary as an Equation List File (*. EQN)
- Save partial Equation Li brary as Equation Documentation Text File (*.TXT)

Before starting this tutorial, be sure to make a backup of the Equation Library files (BI OLIB. DBF, Bl OLIB. FPT).

The Equation Li brary Editor all ows you to modify documentation for equation(s), add and del ete equations and nake new equation libraries. These capabilities and others are described in Reference: Li brary Editor. Some of them are illustrated in this tutorial.

1. Sel ect edit equation Li brary from the Main Menu. At the Edit Library Menu.,

Select Retrieve. Then sel ect the file Bl OLIB. DBF fromthe list of database files. Use $\varangle \mathbb{F l} 0\rangle$ to toggle the menu of f.

Vie wing Documentation for an Equation

2. Each II ne in the Equation Summary Vindow summarizes one equation that predi cts a plant component. Infornation here includes species, I ifeform pl ant component code, geographic area code, seral stage code, the first two parameters (when both present) and thei r ranges.
a. Use PgUp and PgDn to nove through this table. Note equations are available for many pl ant components for some species and for one or a few components for others.
b. Use PgUp, PgDn, and the arrow keys or a mouse to highlight one line (equation) in the Equation Summary Window that may interest you.
c. For the highlighted equation, view the first screen of documentation by pressing \&Enter> when the Edit Li brary Menu is not shown or sel ecting Vi ew Mdify equation from this menu. The Original and Final Equations VI ndow shous the form units and fit statistics (when available) of the equation as in the ori gi nal source, and the equation number, equation key, form units and parameters of the equation as used by BI OPAK.
d. Press $\langle\mathrm{PgDn}>$ to view the Sources of Equation Vindow This incl udes raw data locations, source of equation (for example, literature citation) and sources of field data.
e. Press <PgDn> to vi ew the Sources of Data Window nore clearly. Information here is often abbreviated.
f. Press <PgUp> to return to the Sources of Equation Vindow
g. Fromthe Sources of Equation Vindow or the Oriqinal and Final Equations WIndow you can press <Ctrl-PgUp> and <Ctrl-PgDn> to nove to the documentation for the previ ous and next equation (as ordered in the Equation Summary Vindow).

h. Press <PgUp> to return to the Equation Sumary Vindow

Sorting the Equation Library

3. Press $\varangle \mathrm{FlO}$ to toggle on the Edit Li brary Menu.
a. Sel ect Sort equations and then Multiple key sorting to get to the Enter Sort Order Window
b. Set the sort order by putting a 1 in front of Lifeform and 2 in front of Pl ant Species. Note for the future that each sort key must have a different sort order (not including those with \mathbf{O} that are not used in the sort).
c. Press <Ctrl-S> to sort the Equation Li brary.

Marking and saving equations

3. Now save a subset of the Bl OLI B. DBF Li brary that incl udes only tree speci es. Fi rst, brouse through the Li brary.
a. Sel ect Brouse equations.
b. There are nany nore equations of tree species than of other lifeforns, so mark the equations that are not trees. With the highlight bar at the first nontree equation, press + to markit. A small bullet appears at the far left of each marked equation. Pressing - unnarks an equation. Mark all the equations with Iifeform C (sedge), G (grass), and H (herb). When you get to the K (coppice) and S (shrub) lifeforns, for this tutorial, refrain from marking the speci es with \mathbf{T} (tree) taxonomic lifeform Stop narking when the \mathbf{T} (Tree) species are reached.

Making a new Equation Library (.DBF) and Equation List (.EQN)

4. A new library can now be nade that incl udes onl y marked equations. Toggle the Menu back on by pressing <FIO.
a. Sel ect File from the Edit Li brary Menu.
b. Sel ect Save from the File Menu.
c. Sel ect equation library Database.
d. Sel ect Marked equation(s).
e. In the File Selection Window select the drive and directory you are using for tutorial files.
f. At the bottom of this wi ndow nane the file sonething like NONTREES. Do not retain the nane BIOLB, otherwise the original BIOLB will, be overuritten with the smaller subset Li brary.
g. Sel ect Save> to create the new library NONTREES. DBF.
h. You will then be gi ven a chance to save an Equation List file with the same root name containing these equations. The Equat ion List File is required for Cal cul ating pl ant components.

Deleting marked equations and saving the remainder

5. Del ete the equations for nontree speci es..
a. Sel ect Del ete equation(s) from Edit Li brary Menu.
b. Sel ect Marked equations.

The original Equation Library, Bl Oll B, is still alive and well because BI OPAK is al nays working with copi es of the Library files.
6. Now save the remai ning equations, all for tree species.
a. Sel ect File.
b. Sel ect Save.
c. Sel ect equation library Database.
d. Sel ect All equations.
e. In the File Sel ection Vindow, name the file sonething like TREES. It will be gi ven a . DBF extension.
Renenber, bef ore bei ng able to use the Li brary in cal cul ations, you al so must save it as an Equation list file.

NOTE: If you want to save a subset of the Li brary based on sonething ot her than Iifef orm (for example, geographic area, plant component), it nould be hel pf ul to sort the Li brary by these factors first.

Creating text documentation of equations

7. You al so may want a printout of the text documentation for sel ected equations. We will save the documentation for equations used. to cal culate BAT (total aboveground bi onass) for the tree speci es PSME, in an earlier tutorial. Refer to the printout of the Summarized Equation Use Report (TUTORI. USE) you made in Lesson Four.
a. Sel ect Browse equations. At least two different summations were used to compute BAT. By looking at the equation keys in the Equation(s) Actually Used col um of the Summarized Equation Use Report, you can natch their keys with those of equations in the Library. In the Equati on Summarv Vindow the codes Spp, LF, Pl ant Comp, GA (geographi c area), SS (seral stage) and LE\# (local equation number) comprise the equation key.
b. One summation used equations for BC, BCD, and BST. Another used equations for BFT, BBL, BST, and BBD. Locate the equation keys for these in the Equation Li brary and use + to mark each.
c. Sel ect File from the Edit Li brary Menu.
d. Sel ect Save equations.
e. Sel ect Text documentation.
f. Sel ect Marked equation(s).
g. In the File Selection Window name the Equation Documentation Text File somethi ng like PSME. It will be gi ven a .TXT extension. If this tutorial were an exercise with your own Input Data File, this file could be saved or printed as documentation of the equations used to cal cul ate the total aboveground bi onass of your Douglas-fir data.

LITERATURE CITED

> A aback Paul B. 1986. Bi onass regressi on equations for understory plants in coastal Al aska: effects of speci es and sampling design on estimates. Northwest Sci ence. 60(2): 90-103.

> Al aback Paul B. 1987. Bi onass-di mensi on rel ationshi ps of understory vegetation in rel ation to site and stand age. In: Estimating tree bi onass regressions and thei r error: Proceedi ngs of the uorkshop on tree bi onass regressi on functions and their contribution to the error of forestry inventory esti nates; 1986 May 26-30; Syracuse, NY. Gen. Tech. Rep. NE-GTR-117. Broonal I, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experi nent Station: 141-148.

> Al endag, I.S. 1980. Manual of data collection and processing for the devel opment of forest bi omass rel ati onshi ps. I nf ornation Rep. PI-X-4. Chal k River, ON Canadi an Forestry Service, Petawava National Forestry Institute. 38 p.

Brix, H; Mtchell, A.K 1983. Thinning and nitrogen fertilization effects on sapwood devel opnent and rel ationships of foliage quantity to sapwood area and basal area in Dougl as-fir. Canadi an Journal of Forest Research. 13: 384389.

Buech, Ri chard R.; Rugg, Davi d J. 1989. Bi onass rel ations of shrub components and their generality. Forest Ecology and Managenent. 26: 257-264.

Daubenmire, Rexford. 1968. Pl ant commities: a text book of pl ant synecol ogy. New York: Harper and Row 300 p.

Dean, T.J.; Long, J.N 1986. Variation in sapuood area-leaf area rel ations within two stands of lodgepole pine. Forest Sci ence. 32(3): 749-758.

Espi nosa- Bancal ari, MA; Perry, D. A: Marshal I, John D. 1987. Leaf areasapuood area rel ationships in adjacent young Dougl as-fir stands with different early grouth rates. Canadi an Journal of Forest Research. 17(2) 174-180

Garrison, G. A; Skovlin, J.M; Poulton, C.E.; Winward, A. H 1976. Northwest pl ant names and synbol s for ecosystem inventory and anal ysis. Gen Tech. Rep. PNW 46. Portl and, OR: U.S. Depart nent of Agriculture, Forest Service, Pacific Northwest Forest and Range Experi nent Station. 263 p.

Ghol z, HL.; Grier, C.C.; Campbel I, A G; Brown, A. T. 1979. Equations for estimating bi onass and leaf area plants in the Pacific Northwest. Res. Pap. 41. Corvallis, OR: Oregon State University, School of Forestry. 39 p.

Grier, Charles C.; Logan, Robert S. 1977. Od-grouth Pseudotsuga menziesii communities of a western Oregon watershed: bi onass di stribution and production budgets. Ecol ogi cal Mbnographs. 47: 373-400.

Koerper, Greg J.; Richardson, Curtis J. 1980. Bi onass and net annual primary production regressi ons for Popul us grandidentata on three sites in northern I ower Mchi gan. Canadi an Journal of Forest Research. 10(I): 92-101.

Long, J.N; Smith, F.W 1988. Estinating leaf area of Abies Iasiocarpa across ranges of stand density and site quality. Canadian Journal of Forest Research. 19(7): 930-932.

Madgui ck, HAI. 1970. Bi onass and productivity model s of forest canopies. In: Rei chle, David E., ed. Ecol ogical studi es: anal ysis of temperate forest ecosystens. Berlin, Gernany: Spri nger-Verl ag: 47-54. Vol. 1.

Marshal I, J.D.; Whring, R.H 1986. Compari son of methods of estimating leafarea index in old-grouth Dougl as-fir. Ecol ogy. 67(4): 975-979.

Pearson, J ohn A ; Fahey, Ti nothy J.; Kni ght, Denni s H 1984. Bi onass and I eaf area in contrasting lodgepole pi ne forests. Canadi an Journal of Forest Research. 14: 259-265.

Pi eper R. D. 1978. Measurement techni ques for herbaceous and shrubby vegetation. Las Cruces, NM New Mexi co State Uni versity, Department of Ani mal and Range Sci ence. 145 p.

Sachs, Donal d. 1983. Managenent effects on nitrogen nutrition and long-term productivity of western hem ock stands: an exercise in si mul ation with FORCYTE. Corvallis, OR: Oregon State Uni versity. 63 p. MS. thesis.

Schl aegel, Bryce E.; Kennedy, Harvey E., Jr. 1984. Do different young pl antation grown speci es require different bi onass nodel s? In: Sauci er, Joseph R., ed.: Proceedings of the 1984 Southern forest bi onass workshop; 1984 J une 5-7; Athens, GA. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experi ment Station: 23-35.

St andi sh, J.T.; Manni ng, G H ; Denmerschal k, J.P. 1985. Devel opment of bi onass equations for British Col unbia tree species. Vancouver, BC: Pacific Forestry Centre, Canadi an Forestry Service. 47 p.

Stanek, W; State, D. 1978. Equations predicting primary productivity (bi onass) of trees, shrubs and lesser vegetation based on current literature. Victoria, BC: Canadian Forestry Service, Pacific Forest Research Centre. 58 p.

Thompson, Dan C. 1989. The effect of stand structure and stand density on the I eaf ar ea-sapnood area rel ationshi p of I odgepole pi ne. Canadi an Journal of Forest Research. 19: 392-398.

Tritton, Loui se M; Hornbeck, J anes W 1982. Bi onass equations for naj or tree speci es of the Northeast. Gen. Tech. Rep. NE-GTR-69. Durham Nt US Department of Agriculture, Forest Service, Northeastern Forest Experi ment Station. 46 p.

Val entine, Harry T.; Tritton, Louise M; Furni val, George M 1984. Subsampling trees for bi omass, vol une, or mineral content. Forest Sci ence. 30(3): 673-681.

Whring, R. H; Schroeder, P.E.; Oren, R. 1982. Application of the pi pe nodel theory to predi ct canopy leaf area. Canadi an Journal of Forest Research. 12(3): 556-560.

Wei ner, J acob; Thonas, Sean C. 1992. Competition and allonetry in three speci es of annual plants. Ecol ogy. 73(2): 648-656.

Wharton, Eric H; Cunia, Ti berius, comps. 1987. Estimating tree bi onass regressi ons and thei r error. In: Proceedi ngs of the workshop on tree bi omass regression functions and thei r contribution to the error of forest inventory esti nates; 1986 May 26-30; Syracuse, NY. Gen. Tech. Rep. NE-GTR- 117. Broonal I, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 303 p.

Whittaker, R. H; Bormann, F.H; Li kens, G.E.; Si ccama, T. G 1974. The Hubbard Brook ecosystem study: forest bi onass and production. Ecol ogi cal Monographs. 44: 233-254.

Whittaker, R. H; Wbodvel I, G.M 1968. Di mensi on and production rel ations of trees and shrubs in the Brookhaven Forest, New York. Journal of Ecol ogy. 56: I-25.

Wbods, Kerry D.; Fei veson, A. H; Botkin, Dani el B. 1991. Statistical error anal ysi s for bi onass density and leaf area index estimation. Canadi an J ournal of Forest Research. 21: 974-989.

APPENDICES

Appendi ces incl ude nore detail and start with complete contents.

> Secti on

95 Codes
95 Geographi c Area codes and Seral Stage codes now in Bl OPAK
Lifef orm codes al lowed by BI OPAK
Paraneter codes allowed by BI OPAK
Pl ant Component codes currently built into BI OPAK
Speci es codes in current Equation Li brary
Custonizing Bl OPAK
Equation Li brary
BI OCODES File
Bl OSUMM File
Equation Li brary
The Li brary supplied with BI OPAK
Equation Sel ection Penalties (ESP)
Equation Sel ection Penal ty (ESP) cal cul ation
Maxi mum Threshol d and Summation ESP Level s
Setting level s
140 Changi ng contributions to the Equation Sel ection Penalty
141 Files
141 User files
141 Run Design files
142 Equation Li brary
files
142 Program files
143 Reports
144 Lifeform
144 Lifef orm substitutions
144 BI OPAK Lifef orm substitution procedures
146 Sel ecting Equations and Summations
148 BI OPAK sel ects Equations and Summations
150 User sel ects Equations and Summations
154 Si tuati ons when Reassi gnnents are recommended
156 Troubl eshooting
156 Error messages
156 Installation errors
157 Errors when starting BI OPAK
157 Desi gn a Run warni ngs and error messages
161 Li brary Editor errors and warni ngs
161 Errors when cal culating pl ant components
162 Errors when generating reports
163 Errors when vi ewing reports
163 Errors in reports
168 Known bugs
168 Strange behavi or and red error boxes
171 Units
171 Parameter units
172 Component units

Codes

Section

```
95 Geographi c Area codes and Seral Stage codes now in Bl OPAK
96 Lifef orm codes allowed by Bl OPAK
96 Parameter codes al l owed by BI OPAK
97 Plant Component codes currently built into BI OPAK
98 Speci es codes in current Equation Li brary
```

There are six types of codes; four codes can be nodified by the user (Geographi c Area, Seral Stage, Pl ant Component, and Species), and two cannot be changed (Lifef orm and Parameter). All codes, except Paraneter, are part of the Equation Key and affect selection of equations from the Library.

Geographic Area codes and Seral Stage codes now in BIOPAK

Geographic Area and Seral Stage codes either must be incl uded in the Input Data File or be specified in the Default Settings Window of Design a Run. The codes can be nodified as described in Appendi x: Customizing BI OPAK. They are part of the Equation Key. The following Geographic Area and Seral Stage codes fit ecosystens (primarily forests) in our area.

Lifeform codes allowed by BIOPAK

Lifef orm codes either must be included in the Input Data File or be substituted by the user or BI OPAK. The following are the onl y Lifeform codes recogni zed by BI OPAK. They cannot be changed by the user. Lifef orm code is part of the Equati on Key.

Code	Lifeform	Strata used in reports
C	Sedge, rush	Herb
	Grass	Herb
H	Herb	Herb
K	Coppice	Shrub
	Li chen	Moss
M	Bryophyte	Mbss
	Shrub	Shrub
T	Tree	Tree

Parameter codes allowed by BIOPAK

The following Parameter codes are used in the Data Input Fornat Window of Desi gn a Run and in the Equati on Li brary; they are not included in the Input Data File. In the Data Input Fornat Vindow, the codes represent the measured parameters in the Input Data File. In the Equation Library, Paraneter codes represent the independent variables used to cal cul ate the pl ant components, except that codes marked by asterisks cannot be used in equations. These codes are the only Parameter codes recogni zed by Bl OPAK. They cannot be changed by the user. Be sure to look at the docunentation for each equation to be used to see where and how these paraneters were measured.

Code	Description
Bl 0	Bi onass
Cl R	Ci rcunf erence
c 0 v	Canopy cover
CR	Crown ratio
DBA	Di aneter at or near base
DBH	Di aneter at breast hei ght
	Form cl ass
HT	Hei ght
LEN	Length (for example, al ong stem projected crown length) Nunber of pl ants
NUM	Number (for exampl e, of fronds, stens, or flowers)
*PLOTAREA	Fi xed-pl ot area
*PRI SMFAC	Prism basal area factor
*PLTSLOPE	Pl ot slope correction
SAP	Sapuood radi al thi ckness
SPA	Sapwood cross-sectional area
VOL	Vol une (for example, of bole, or crown)
W D	W dth (for example, projected crown with)

Plant Component codes currently built into BIOPAK

Plant Component codes cone into play when components are requested for cal culation. Component codes are part of the Equation Key. The definitions are ordered by derivation of the code. This list can be nodified as described in Appendi x: Cust omizing BI OPAK: BIOCODES File. Note: Equations are not available in the Library for every component listed bel ow

```
Code Definition
Leaves and flowers:
    AFN Al-si ded area, foliage, new
    AFO Al-si ded area, foliage, old
    AFT All-si ded area, foliage, total
    BFF Bi onass, foliage (fronds), fertile
    BFN Bi onass, foliage, new
    BFO Bi onass, foliage, old
    BFT Bi omass, foliage, total
    BFV Bi onass, foliage (fronds), vegetative
    BIT Bi onass, inflorescence, total
    PFN Proj ected (one-si ded for broad leaves) area, foli age, new
    PFO Proj ected (one-si ded for broad leaves) area, foli age, ol d
    PFT Proj ected (one-si ded for broad l eaves) area, foliage, tot al
Branches:
    BBD Bi onass, branches, dead
    BBL Bi onass, branches, li ve
    BBS Bi onass, branches, smal I
    BBT Bi onass, branches, tot al (live + dead)
Stens:
    BSB Bi onass, stem bark ( nay or nay not i ncl ude top and/ or stump)
    BST Bi onass, stem total (bark pl us nood)
    BSW Bi onass, stem nood ( may or may not i ncl ude top and/ or stump)
    CSB Cross-sectional area, stem at base of the stem
    CSD Cross-sectional area, stem at d.b.h.
    CZB Cross-sectional area, sapuood, at base of the stem
    CZD Cross-secti onal area, sapwood, at d.b.h.
    HST Hei ght, stem total
    LSL Length of I ongest stem
    VQW Vol une, top, nood
    VSB Vol une, stem bark ( may or may not i ncl ude top and/ or stump)
    VST Vol une, stem total (mood pl us bark)
    VSW Vol une, stem mood (nay or may not i ncl ude top and/ or st ump)
    VSZ Vol une, stem sapnood
    VI Vol une, boar off oot, Scri bner
    VY2 Vol une, boardf oot, I nternati onal
Crown (yood + bark + foliage):
    BCD Bi onass, crown, dead ( nay or may not i ncl ude top of stem)
    BCL Bi onass, crown, live ( nay or may not incl ude top of stem)
    BCT Bi onass, crown, total (live pl us dead)
    PCH Projected area, crown, proj ected onto the horizontal pl ane
    PCS Projected area, crown, proj ected onto the slopi ng ground surface
    VCT Vol une, crown, total
Underground:
    BKC Bi onass, coarse roots, root crown
    BKL Bi onass, coarse roots, live
```

> BLL Bi onass, rootlets (fine), live
> BLM Bi onass, rootlets (fine), nycorrhizal
> BLU Bi omass, rootlets (fine), unnycorrhizal
> BRD Bi onass, roots, dead
> BRL Bi onass, roots, live
> BRT Bi onass, roots, total
> BUD Bi omass, under ground, dead
> BUL Bi onass, under ground, live
> BUN Bi omass, underground, nodul es
> BUT Bi onass, underground, tot al
> Groups of components (rel ations shown graphically in figures 2-4):
> BAE Bi onass, aboveground, entire (Iive and dead, mood pl us bark)
> BAL Bi onass, aboveground, live (uood t bark t foliage)
> BAP Bi onass, aboveground, pl us (live, wood pl us bark)
> BAT Bi onass, aboveground, total (Iive and dead, mood t bark t foliage)
> BTT Bi onass, tot al (aboveground and underground), tot al
> VAE Vol une, aboveground, entire (live and dead, nood t bark)

Species codes in current Equation Library

The Speci es codes in the Iibrary as of Decenber 1993 are listed by Iifeform groups. The letters in parentheses after the lifef orm group names represent the Taxonomic Lifef orm codes associ ated with the species in the Equation Li brary.

Code Scientific name	Common name
Sedges (C):	
LUCA2 Luzul a campestris LUZU Luzul a spp.	Snooth woodrush Wbodrush
Grasses (G):	
AGROS Agrostis spp.	Bent grass
CARU Cal amagrostis rubescens	Pi negrass
FEAR Festuca arizonica	Arizona fescue
FESTU Festuca spp.	Fescue
Gramin Grami noi des spp.	Any grass species
POFE Poa fendl eri ana	Mittongrass

Herbs, For bs (H):

ADBI	Adenocaul on bi col or
ADPE	Adi ant um pedat um
ANMA	Anaphal is margaritacea
ARCA3	Aralia californica
ATFI	At hyri umfilix-femina
BLSP	Bl echnum spi cant
CASC2	Campanul a scoul eri
CI RSI	Ci rsi um spp.
Cl W	Cirsium vul gare
CLUN	Clintonia uniflora
COAS	Coptis aspenifolia

Aneri can adenocaul on Northern mai denhai r fern Common pearl everlasting
California aralia
Ladyf ern
Deerfern
Bel I flower
Thi stle
Bull thistle
Queencup beadlily
Spl eenwort-I eaved gol dt hread

COCA	Cornus canadensi s
COCA2	Conyza canadensi s
COHE	Col l omi a het er phyl a
COLA	Coptis I aci ni ata
DRAU2	Dryopteris austriaca
EPAN	Epi l obi um angustifol i um
EPPA	Epi I obi um pani cul at um
EPVA	Epi I obi um wat soni i
EQU S	Equi set um spp.
GATR	Gal i umtrifl or um
GNM	Gnaphal i um mi crocephal um
G00B	Goodyera obl ongi fol i a
GYDR	Gymmocar pi um dryopt eris
H AL	Hi er aci um al bi fl or um
LAPO	Lat hyrus pol yphyllus
LI BO2	Li nnaea boreal is
LOCR	Lot us crassifoli us
LOOB	Lot us obl ongi fol i us
LULA	Lupi nus I atifolius
MADI A	Madi a spp.
MADI 2	Mai ant hemum di I at i t um
M GU	M mul u guttat us
MOUN	Mbneses uniflora
MMD	Muhl enber gi a mont ana
OXOR	Oxal is oregana
PEFR2	Petasites frigidus
PERA	Pedi cul aris racemosa
POM	Pol ysti chum meni tum
PTAQ	Pteri di um aqui l i num
PYSE	Pyrol a secunda
RUPE	Rubus pedat us
SE] A	Senecio jacobaea
SESY	Senecio silvati cus
SETR	Senecio triangul aris
SI LO2	Sitani on l ongi fol i um
SMST	Smilaci na stellata
STC04	Stachys cool eyae
THOC	Thal i crum occi dent al e
TI TR	Ti arella trifoliata
TRLA	Trifolium l atifolium
TRLA2	Tridentalis I atifolia
V SE	Vi ol a sempervi rens
WHMD	Wi ppl ea modesta
XETE	Xer ophyl I um t enax

Coppice (K):
ACD Acer circinatum
ACMA Acer macrophyllum
ARME Arbustus menziensii
CON Cornus nuttalli
LIDE Lithocarpus densiflor us
QUE Quer cus kelloggii
RHMA Rhododendr on macrophyllum

Bunchberry dognood Hor seweed
Vari ed-I eaf col omi a Cutl eaf gol dthread Mbuntain hoodf ern Fi reweed
Aut um will ow weed Wht son' s will ow need Horset ai I
Sueetscented bedstraw Cudveed
Rattl esnake- pl ant ai \boldsymbol{n} Oak-fern
White hawkweed
Pacific peavine
Twi nfl ower
Big lotus
Lotus specie
Broadl eaf I upi ne
Tarneed
May-IIIy
Common monkeyflower
Wbodnymph
Mbuntai n muhly
Oregon oxalis
Sweet col tsf oot
Si ckl etop pedi cul aris
Pacific coast swordfern
Braken fern
Si debel I s
Fi ve-I eaved bramble
Tansey ragwort
Wbodl and groundsel
Arrow eaf groundsel
Squi rreltail
Starry sol ononpl une
Cool ey's hedge-nettle
Vestern meadowrue
Foamf I ower, cool nort
Twi n cl over
Western starflower
Redwoods vi ol et
Whi ppl evi ne
Beargrass

Vine maple
Bigleaf maple
Pacific madrone
Pacific dognood
Tanoak
Cal iforni a bl ack oak
Pacific rhododendron

Bryophytes (M:

EUOR	Eur hynchi um or eganum	Mbss
HYCI	Hypnum ci rci nal e	Mbss
HYSP	Hyl ocomi um spl endens	Feather noss
J ULA	J unger manni a I anceol at a	Li vernort
PLUN	Pl agi ot heci um undul at um	Mbss
POMA	Pogonat um macouni i	Mbss
PTCR	Ptilium crista-castransis	Moss
RHGL	Rhi zommi um gl abrescens	Moss
RHLO	Rhyti di adel phus Iorens	Feather noss

Shrubs (S):

ACCI	Acer circi natum	Vi ne naple
ACG.	Acer gl abrum	Mountain maple
ALSI	Al nus si nuata	Sitka al der
AMAL	Anel anchi er al nifolia	Servi ceberry
ARC03	Arctost aphyl os col unbi ana	Manzanita
ARPA	Arctostaphyl os patula	Greenl eaf manzanita
ARTR	Artemisia tridentata	Bi g sagebrush
ARUN	Arctostaphyl os uvi-ursi	Ki nni ki nni ck
ARM	Arctost aphyl os vi sci da	Whitel eaf manzanita
BENE	Berberis nervosa	Cascade hollygrape
BERE	Berberis repens	Creepi ng hol l ygrape
CACH	Castanopsis chrysophylla	Gol den chi nkapi n
CASE	Castanopsis sempervirens	Si erra chi nkapi n
CECO	Ceanothus cordul at us	M. whi tet horn ceanot hus
CEI N	Ceanot hus int egerrims	Deerbrush ceanothus
CESA	Ceanothus sangui neus	Redstem ceanot hus
CEVE	Ceanothus vel utinus	Snowbrush ceanothus
CEVEL	Ceanot hus vel uti nus var. I aevi gat us	Greasewood
CEVEV	Ceanot hus vel uti nus var. vel uti nus	
CHNA	Chrysothamus nauseosus	Rubber/gray rabbitbrush
CHM	Chi onophila unbellata	Common princes-pi ne
COCOC	Coryl us cornuta var. californi ca	California hazel
COCA2	Coryl us cornuta	Hazel
COST	Cornus stol onifera	Western dognood
GASH	Gaul theria shall on	Sal al
HABL	Hapl opappus bl oomeri	Rabbi tbrush gol denweed
HODI	Hol odi scus di scol or	Creanbush rockspi rea
J UCO	J uni per us communi s	Common j uni per
LI DE	Lithocarpus densiflorus	Tanoak
LOUT	Loni cera utahensis	Utah honeysuckle
MEFE	Menzi ensi a ferrugi nea	Smooth menzi ensia
OPHO	Opl opanax horri dum	Ameri can devil scl ub
PAM	Pachistimm myrsinites	Oregon boxwood
PHLE2	Phil adel phus I ewi si i	Mockor ange
PHMA	Physocarpus mal vaceus	ni nebark
PRV	Prunus vi rgini ana	Chokecherry
PUTR	Purshia tridentata	Antel ope bitter brush
QUE	Quercus kelloggi i	Californi a bal ch oak
RHMA	Rhododendr on macrophyl Ium	Pacific rhododendron
RI BES	Ri bes spp.	Currant species
R BR	Ri bes bract eosum	Stink currant

ROSA	Rosa spp.
RU D	Rubus i daeus
RULE	Rubus I eucoder mis
RUPA	Rubus parviflorus
RUSP	Rubus spectabilis
RUUR	Rubus ursi nus
SAJ E	Sal i x j epsoni i
SALI X	Sal i x
SASC	Sal ix scoul eri ana
SASE	Sambucus cerul ea
SAS12	Sal ix sitchensi s
SHCA	Sher phedi a canadensi s
SOSC	Sorbus scopul i na
SPBE	Spirea betulifolia
SYAL	Symphoricarpos al bus
SYMPH	Symphori car pos
VAAL	Vacci ni um al askaense
VACC I	Vacci ni um spp.
VAGL	Vacci ni um gl obul are
VAPA	Vacci ni um parvi florum
VASC	Vacci ni um scopari um

Trees, Tree conbi nations (T):

ABI ES	Abi es spp.
ABAM	Abi es amabilis
ABCO	Abi es concol or
ABGR	Abi es grandis
ABLA2	Abi es I asi ocarpa
ABMA	Abi es magnifica
ABMAS	Abies magnifica shastensis
ABPR	Abi es procera
ACMA	Acer macrophyllum
ALRU	Al nus rubra
ALSI	Al nus si nuata
ARME	Arbutus menziesii
BEPA	Betul a papyrifera
CADE	Cal ocedrus decurrens
CACH	Castanopsi s chrysophylla
CEDAR	CHNO \& THPL
CHNO	Chamaecyparis nootkat ensi s
J UOC	J uni per us occi dental i s
J USC	J uni per us scopul or um
LAOC	Larix occi dental is
LI DE	Lithocarpus densiflorus
PI AB	PI MD \& ABGR \& PI AL
PI AL	Pi nus al bi caul us
PI CO	Pi nus contorta
PI EN	Pi cea engel manni i
PIJ E	Pi nus j efferyi
PI LA	Pi nus I andoerti ana
PI MD	Pi nus monticola
PI NUS	Pi nus
PI P0	Pi nus ponderosa
PI SI	Pi cea sitchensis

Rose speci es
Red raspberry
Whi tebark raspberry
Western thi nbl eberry
Sal nonber ry
Cal iforni a dewberry
A willow
Willow species
Scoul er willow
Bl ueberry el der
Sitka willow
Buff al oberry
Mount ai n ash
White spi rea
Common snowberry
Snowberry speci es
Al askan huckl eberry
Huckl eberry speci es
Bl ue huckl eberry
Red whortleberry
Grouse whortleberry

Fir speci es
Pacific silver fir
White fir
Grand fir
Subal pi ne fir
Cal iforni a red fir
Shasta red fir
Noble fir
Bi gl eaf napl e
Red al der
Sitka al der
Pacific nadrone
White/ paper bi rch
I ncense- cedar
Gol den chi nkapi n
Al aska yel low cedar
Vestern juni per
Rocky Mbunt ai n juni per
Vestern I arch
Tanoak
Whi tebark pi ne
Lodgepol e pi ne
Engel nann spruce
Jeffrey pi ne
Sugar pi ne
Western white pi ne
Pi ne speci es
Ponder osa pi ne
Sitka spruce

POTR	Popul us tremul oi des	Quaki ng aspen
POTR2	Popul us trichocarpa	Bl ack cottonwood
PPPA	PSME \& PIPO \& PI EN \& ABLA 2	
PREM	Prunus enmorgi nata	Bitter cherry
PSME	Pseudotsuga menziesi i	Dougl as-fir
QuAG	Quercus agrifolia	Coast live oak
QUCH	Quercus chrysol epsis	Canyon live oak
	Quercus dougl asii	Bl ue oak
QUEN	Quercus engel manni i	Engel mann oak
QUGA	Quercus garryana	Oregon white oak
QUE	Quercus kell oggi i	California black oak
QULO	Quercus I obata	Valley oak
QW	Quercus wi slizeni	Interior live oak
SEG	Sequoi adendr on gi gant eum	G ant sequoi a
THLAPI	THPL \& LAOC \& PI CO	
THPL	Thuj a plicata	Western redcedar
THPSPI	THPL \& PSME \& PI PO	
TSFE	Tsuga heterophylla	Western heml ock
TSME	Tsuga mertensi ana	Mbunt ai n hem ock
UMCA	Unbel I ularia californi ca	Cal i f orni a-l aurel

Customizing BIOPAK

Section

```
103 Equati on Li brary
103 Bl OCODES File
106 Mbdi fyi ng Pl ant Component codes
108 Mbdi fyi ng Geographi c Area codes
108 Mbdifying Seral Stage codes
108 Mbdifying Equation Sel ecti on Penalties
109 Bl OSUMM File
110 Mbdifying the Default Summation Trees
```

BI OPAK was desi gned to meet the needs of our ecol ogy research group at the Pacific Northwest Research Station in Corvallis, Oregon. We have bu-ilt some flexibility into the system however, by allowing users to customize sone key el enents of the software.

Equation Library

The Equation Li brary shi pped with BI OPAK contains about 1, 000 equations. Mbst equations were devel oped in the Pacific Northwest. The Equation Li brary Editor al lows for both modifying the existing Li brary, and for creating a new one. Reference: Li brary Editor contains full infornation on adding new equations and Appendi x : Equat i on Li brary gi ves nore infornation on the Equation Li brary shi pped with BI OPAK.

For your particular needs, you will probably nodify the Equation Li brary. For example, if BI OPAK will be used in a limited geographic area, you may want to save a subset of the existing library and add nore equations from a particular regi on. If BI OPAK will be used outside the Northwest of the United States of Anerica you will probably want to build a library of new equations.

BIOCODES File

Bl OCODES is a flat ASCII file that can be nodified with a text editor. The file contains all Pl ant Component codes and units, Geographic Area codes, Seral Stage codes, and Equation Sel ection Penalties (ESPs). The Bl OCODES file provides a great deal of flexibility in appl ying BI OPAK, but user beware! The fornat and function of the file must be understood before it can be nodified; ot herwise, invalid results or a nonf unctional program nay result. Before starting any nodifications, make a backup copy of the, BI OCODES file.

The Bl OCODES file is used for several purposes in the softuare:

1. Data verification in the Run Design nodule. The Pl ant Component, Geographic Area and Seral Stage codes, as specified in BI OCODES, are the onl y valid entries when desi gni ng a run. The NO VALUE CALCULATED Equation Sel ection Penalty level is al so the upper limit for ESP Level sin the Def ault Settings W^{\prime} ndow
2. Sel ection of equations. The ESP val ues associ ated with each misnatch
affect the sel ection of equations from the Library. For a given record from the Input Data File, BI OPAK will select an equation with the lowest total ESP.
3. Col um headi ngs in reports. The abbrevi ated component descriptions entered under the col ums "Titlinel " and "Titline2" are used as col um headi ngs for the component output in reports.

Li nes begi nning with an asterisk (*) denote lines read directly by the software. The text in the lines directly following the asterisk must not be changed, or the program will not run.

Li nes beginning with an ampersand (δ) are comments and may be inserted anyuhere in BI OCODES. In this case, the ampersand was used to insert col um headi ngs so that the file is easier to interpret.

Because the file is read directly by the software, be sure to retain the file format. Be caref ul in modifying BI OCODES, no error checking is done. If the structure is not correct, the programmay crash or give invalid results.

Here is a sample Blocoos file:

```
*COMPONENT CODES (LEXI CAL ORDER)
&Co Unit TitLinel TitLine2 Definition
AFN cm2 AREA NEW FOLI AGE Area, foliage, new
AFO cm2 AREA OLD FOLI AGE Area, foli age, ol d
AFT cm2 AREA TOT FOLI AGE Area, fol i age, total
BAE gm Bl O ENTR ABOVGRND Bi onass, aboveground, entire (li ve&dead, uood+bark)
BAL gm BlO LIVE ABOVGRDD Bi onass, aboveground, live, total
BAP gm BI O WHBK ABOVGRND Bi onass, aboveground, wood t bark
BAT gm Bl O TOT ABOVGRND Bi onass, aboveground, tot al
BBD gm BIO DEAD BRANCFES Bi onass, branches, dead
BBL gm BlO LIVE BRANCHES Bi onass, branches, li ve
BBS gm Bl O SMAL BRANCFES Bi onass, branches, small
BBT gm BI O TOT BRANCFES Bi onass, branches, total (live t dead)
BCD gm Bl O DEAD CROWN Bi onass, crown, dead
BCL gm BIO LI VE CRONN Bi onass, crown, li ve
BCT gm Bl O TOT CROWN Bi onass, crown, total
BFF gm Bl O FERT FRONDS Bi onass, foliage (fronds), fertile
BFN gm Bl O NEW FOLI AGE Bi onass, foli age, new
BFO gm Bl O OLD FOLI AGE Bi onass, foliage, ol d
BFT gm BlO TOT FOLI AGE Bi omass, foliage, total
BFV gm BlO VEG FRONDS Bi onass, foli age (fronds), vegetative
Bl T gm Bl OMASS I NFLORES Bi onass, i nflorescense, tot al
BKC gm Bl O CRVN COARSRTS Bi onass, koarse roots, root crown
BKL gm BlO LIVE COARSRTS Bi onass, koarse roots, li ve
BLL gm Bl O LIVE ROOTLETS Bi onass, rootlets (fine), li ve
BLM gm BlO MC ROOTLETS Bi onass, rootl ets (fine), mycorrhizal
BLU gm Bl O UNM ROOTLETS Bi onass, rootlets (fine), un- nycorrhizal
BRD gm BIO DEAD ROOTS Bi onass, roots, dead
BRL gm BlO LI VE ROOTS Bi onass, roots, live
BRT gm BlO TOT ROOTS
BSB gm BlO STEM BARK
BST gm Bl O STEM TOTAL
BSWgm BlO STEM VDOD Bi onass, stem nood
BTT gm BIO TOT TOTAL Bi onass, total (above and bel ow ground), total
```



```
    *STABLE
& Codes in top line are for candi date equations
    & Codes in lst row are for Request to Li brary
                G
\begin{tabular}{rrrrrr} 
' G & 0 & 1003 & 1001 & 1000 & 1002 \\
\(' E '\) & 1001 & 0 & 1000 & 10001 & 10000 \\
\(' Y '\) & 1000 & 1001 & & 100 & 1002 \\
'M & 1000 & 10000 & 101 & 0 & 100 \\
\(' 0\) & 1000 & 1000 & 1001 & 100 & 0
\end{tabular}
    *UNDER- EXTRAPOLATI ON
    150
*OVER- EXTRAPOLATI ON:
20050
*PARAMETER RANGE UNKNONK
3000
*COPPI CE CHANGED -TO TAX LI FE:
4000
*BFT CHANGED TO BAT FOR HGS:
5000
*NO VALUE CALCULATED:
80000
```

```
Modifying Plant Component codes-
The Pl ant Component codes recogni zed by Bl OPAK nay be added, changed, or
del eted. There may be a tot al of 150 Pl ant Component codes, and they must be
in al phabetical order. For each Pl ant Component code added, the units
associ ated with them al so must be included. Only the metric units in Appendix:
Units are valid because these units must match those in the Equation Li brary.
When nodifying Component codes, stay within the section of Bl OCODES following
the I i ne:
*COMPONENT CODES (LEXI CAL ORDER)
The fornat is as follows:
Col umms: Contents:
1-3 Component code, all capital letters
4 Bl ank
5-8 Units (must be metric, as in Appendi x: Units)
9 Bl ank
10-17 Col umm heading in reports, line 1
                                Bl ank
19-26 Col umm headi ng in reports, line 2
                                Bl ank
28-80 Descriptive I abel (used in Components to Output)
A system was devel oped to construct the list of codes shi pped with BI OPAK. Table 2 illustrates the system and the meaning of the characters used in their construction. Use of al these characters is encouraged so that all Plant Component codes have a consistent interpretation.
```

Table 2-- BI OPAK system for deri ving Pl ant Component codes ${ }^{\text {a }}$
Character Meani ng(s)

```
First character:
    A Al-sided surface or leaf area
    P Projected surface or leaf area
    C Cross-sectional area
    B Bi onass
    H Pl ant hei ght
    L Length of I ongest stem
    V Vol une
Second character:
    A Aboveground
    B Branch
    C Crown (branches and foliage)
    F Foliage or fronds
    | I nfl orescence
    Z Sapwnod
    S Stem
    Y Board feet
    Q Top
    T Total (aboveground and underground)
    U Underground
    R Roots
L Little roots (generally < 2 mm di ameter)
    K Coarse roots (generally > 2 mm di ameter)
    WCurrent year twi gs
    N Current year twigs and foliage
    X Aboveground noody without current year twigs, with bark.
Thi rd character:
    B Bark; or Base of stem
    W Wbod
    P Wbod pl us bark, live
    E Entire: live and dead, nood and bark
    L Li ve; or Longest
    D Dead; or DBH
    N Nodul es; or New
    O Old
    F Fertile (reproducti ve)
    V Vegetati ve (not reproductive)
    C Crown (canopy crown or root crown)
    T Total
    S Snall; Or Projected onto the sloping ground surface
    M Mycorrhizal
    U Unmycorrhi zal
    Z Sapnood
    1 Scri bner
    2 \text { I nternational}
```

[^0]
Modifying Geographic Area codes--

Mbst of the equati ons shi pped with BI OPAK were devel oped in the Pacific Northwest. You may want to use BI OPAK outsi de this regi on, or add nore specific geographic areas than those found in the current versi on of Bl OCODES.

If more equations from other regi ons are added, the new Geographic Area codes and their associated ESPs need to be added. There al so nay be reason to split up the geographi c areas currently found in Bl OCODES. Agai n, the new codes and their associ ated ESPs must be added.

Codes and thei reani ngs can be added, nodified, or del eted after the line: *GEOGRAPH C AREA CODES

Any letter nay be used as a Geographi c Area code; therefore there nay be a total of up to 26 codes. After settling on a new set of codes, the codes and ESPs i mmedi atel y following the line:
*GTABLE
must be revised. The codes on the top and side of the *GTABLE must be in the sane order as those following *GEOGRAPH C AREA CODES. The codes on the left si de must start in col umn 1 and be encl osed in singlequotes. Val ues on each line in this square natrix are delimited by white spaces (a blank or several blanks -in row). Li ni ng up val ues in the same col umn will facilitate interpretation by inserting multiple blanks. The codes across the topline represent those of candi date equations in the Li brary, and the codes in the first col um represent those in the Request to the Li brary (from data or Default Settings Window). Refer to Mbdifying Equation Sel ection Penalties for gui del ines on setting ESPs.

Modifying Seral Stage codes--

The' seral stages shi pped with Bl OPAK reflect a particular pl ant ecol ogy. perspective. The equations in the L brary use these Seral Stage codes. If uorking froma different perspective you nay want to change the gi ven codes. The Seral Stage codes and their meani ngs can be added, changed, or del eted after the line
*SERAL STAGE CODES
Any letter nay be used as a Seral Stage code; therefore there nay be a total of up to 26 codes. After a new set of codes is settled on, the codes and ESPs i medi ately following the line
*STABLE
must be revi sed. The codes on the top and side of the *STABLE must be in the sane order as those following *SERAL STAGE CODES. The codes on the left side must start in col um 1 and be enclosed in si nglequotes, for example, 'G. Val ues on each line in this square natrix are delimited by white spaces (a blank or several blanks in a row). We suggest lining up val ues in the same col um to facilitate interpretation by inserting miliple blanks. The codes across the top Iine represent those of candi date equations in the Li brary, and the codes in the first col um represent those in the Request to the Library (from data or Default Settings Window). Refer to Mbdifying Equation Sel ection Penalties for guidelines on setting ESPs.

Modifying Equation Selection Penalties--

The naj or feat ure of BI OPAK is its ability to link vegetation Input Data Files with a library of equations. In nany instances, the plants used to construct
the equations in the Li brary will cl osel y match the plants in the Input Data File. There al so will be instances, however, when the plant sizes, geographic areas, or seral stages will not natch. With each misnatch, there is an associ ated Equation Sel ection Penal ty.

The severity of the misnatch will depend on the particular situation; for example, if the Input Data File were from southeast Al aska, but an equation is used from coastal Oregon, a slight geographic mismatch will occur. If the equati on were from the Si erras, however, the misnatch would be nore severe. The ESPs assi gned to each misnatch should reflect these severities.

In the BI OCODES file shi pped with BI OPAK, we used four level s of magnitude (100, 500, 1000, and 10000) for geographic area and seral stage misnatches. On sone Iines in the geographic area and seral stage tables, there is nore than one ESP of the sane magnitude. In these cases, we ranked the ESPs in order of preference, for example, for an Input Data File from the west side of the Cascades (W, we preferred C (Oregon and Whshi ngt on Coast Ranges) over A (southeast Al aska).

Keep in mind the purpose of the ESPs. For each record in the Input Data File, Bl OPAK will consi der equations for a gi ven species and plant component. If there is an equation that natches the input record exactly (sane species, lifeform geographic area, seral stage, and plant size), the resultant ESP noul d be zero. Al though the species and lifeform must natch, there nay be some geographic area and seral stage misnatches, or plant size extrapol ations. BI OPAK will sum the ESPs for each potential equation and sel ect an equation that will result in the lowest ESP val ue.

File

When an equation for a specific species and plant component is not present in the Equati on Li brary, BI OPAK may perform a sumnati on of lesser components. See Appendi x: Sel ecting Equations and Summations: Bl OPAK Sel ects Summations for nore details.

These default sumnation trees, as shown in figures 2 to 4 , are specified in a flat ASCl file called BI OSUMM These summation trees may be nodified, within strict guidel ines; however, great care should be taken when doing this. It is easy to make mistakes that will be difficult to detect. Refer to Appendix: Sel ecting Equations and Summation: BI OPAK Sel ects Summation for the roles of Equation Sel ection Penal ty wei ghts.

Any line that begins with a dollar sign (\$) or an ampersand-(\&) is considered a comment, and may be placed anywhere in Bl OSUMM In this case, we used an ampersand to insert col um headings and a dollar sign to insert col umn numbers. Any " + " sign in the first col um indicates that an alternative summation is available; for example, for BAT, either BFT and BAE can be summed, or BCT and BST can be summed.

Here is an example of a Bl OSUMM File:

```
& Tr ee-Shr ub-Coppi Herb-Grass-Sedge Mbss-Li chen- Bryo
&Co SummStructl ESP1 SummStruct2 ESP2 SummStruct3 ESP3
$23456789012345678901234567893012345678901234567890
AFN
AFO
AFT AFN+AFO
AFN+AFO
AFN+AFO
BAE BAP+BBD
BAP BBL+BST
BAT BFT+BAE
BFT+BST
BFT
+ BCT+BST
BBD 0.1
BBL
0. }
BCD
BCL
BCT BCL+BCD
BFN
BFO
\begin{tabular}{lllll}
\(B F T\) & BFN+BFO & 0.1 & BFN+BFO & BFN+BFO
\end{tabular}
BKC
BKL
BLL BLU+BLM
BLU+BLM
BLM
BLU
BRL BKC+BKL+BLL BKL+BLL
BSB
0. }
BST BSB+BSW
BSW
BTT BAT+BUT
BUD
BUL BRL+BUN BRL+BUN
BUN
BUT BULBUD BULBUD
PFN
PFO
PFT PFN+PFO PFN+PFO PFN+PFO
VSB 0.1
VST VSB+VSW
VSW
```

Modifyjng the Default Summation Trees--
The Component codes are in the first three col ums of the BI OSUMM File, The
Component codes fromthe Bl OCODES File must be incl uded in BI OSUMM if they are
either:
I. A parent component of a summation (that is, it can be computed by suming
two or nore components), or
2. A subcomponent in a summation (that is, it is used in a summation to.
compute another component).
Al I Pl ant Component codes in Bl OSUMM must be in the Bl OCODES file described
under BIOCODES File. Component codes must be all capital letters. Parent'
codes must be in al phabetical order.

There are separate sumation tree struct ures for three groups of lifeforns, as can be seen in the preceding example of a Bl OSUMM File. Subcomponents cannot be repeated within a gi ven summation tree, except in the case of optional tree structures (see figures 2 through 4 for a graphical representation of the summation trees). For example, BST appears twice in the Default Sumation Tree for tree, shrub, and coppice lifeforns--once as a subcomponent of BAP, and once as a subcomponent of BAT. This is acceptable because each usage of BST is part of separate BAT summation option. Because the optional summations are "either/or" situations, onl y one BAT summation is being considered at a time; therefore, onl y one BST is considered at one time.

The ESP val ue of a summation is represented by the hi ghest ESP val ue of any of its subcomponents (see Appendix: Equation Sel ection Penalties for more inf ornation on the cal cul ation of summation ESPs). The ESP wei ghts determine the importance of a gi ven subcomponent to a summation. Without ESP weights, if a subcomponent were missing, the sumnation would not be executed. If a subcomponent were a si gnificant contributor to the summation, then this would be acceptable (ESP weight $=1.0$). If the contribution of the subcomponent to the sumnati on were minor, however, then it should be gi ven less wei ght (ESP wei ght <1.0).

```
Col umns Contents
I-3 Component code representing the sum (the parent code in the sum)
4 Bl ank
Summation for Tree, Shrub and Coppice Iifeforns (optional):
    5-7 Code for first component to add
    a t sign
    9-11 Code for second component to add
    12 t sign (if have thi rd component in summation)
    13-15 Code for thi rd component to add (optional)
    16
    17-20 ESP wei ght for subcomponent in a summati on, use deci nal poi nt, nay be
        bl ank if = 1.0
    21 Bl ank
Summation for Grass, Herb and Sedge lifeforns (optional):
    22-24 Code for first component to add
    25 t sign
    26-28 Code for second component to add
    29 t sign (if have third component in summation)
    30-32 Code for thi rd component to add (optional)
    33 Bl ank
    34-37 ESP wei ght for subcomponent in a summation, use deci mal point, may be
        bl ank if = 1.0
    38 Bl ank
Summation for Bryophyte and Lichen lifeforns (optional):
    39-41 Code for first component to add
    42 t sign
    43-45 Code for second component to add
    46 t sign (if have thi rd component in summati on)
    47-49 Code for third component to add (opti onal)
    50 Bl ank
    51-54 ESP wei ght for subcomponent in a summation, use deci nal poi nt, nay be
        bl ank if = 1.0
```

Occasi onally you may want to specify more than one group of codes to use to cal cul ate the val ue for a parent code; that is, there nould be nore than one potential summation for the gi ven component. Each of these can be inserted on its own line directly following that parent code. Mbdify these lines by omitting the parent code and putting a " + " sign in col umn 1. The rest of the fornat is as gi ven above. There nay be at nost two such additional sumation lines for any parent code. The number of Pl ant Component codes in Bl OCODES pl us the number of additional sumnation Iines in Bl OSUMM must not exceed 80.

Equation Library

Section
113 The Li brary supplied with BI OPAK
113 List of equations in Bl OLIB in January 1994

The Library supplied with BIOPAK

The Equation Li brary supplied with Bl OPAK was devel oped to neet the needs of our ecol ogy research group in Corvalis. It incl udes nost equations we could find from Oregon and Whshi ngton sites and has been suppl emented to include many equations for species from the Si erra Nevada Mbuntains of California, northern Rocky Mbuntains, British Col unbia, and southeast Al aska. The files Bl OLIB. DBF and BIOLB. FPT together make up this library and contain over 1, 100 equations. The nost up-to-date versi on of the library will be shi pped with the Bl OPAK sof t ware.

This Iibrary includes all the equations in Ghol z and others (1979) except those with problens we could not resol ve. We have corrected problens with published equations, following commini cation with the authors, as we encountered them The Speci es codes used conform in general, to those in Garrison and others (1976). Codes for bryophytes are comprised of the first tuo letters of the genus and first tuo letters of the species, in a manner similar to those in Garrison and others (1976), and numbers have been added when needed to di sti ngui sh them from other codes.

The equations can be edited, or new equations can be added, as described in Ref erence: Li brary Editor.

List of equations in BIOLIB in January 1994--
We have incl uded a list of equations, as shown in the Eauation Summarv Vindow of the Li brary Editor (see Reference: Li brary Editor). We periodically correct and add equations so the Iibrary shi pped with BI OPAK nay be different.

The abbrevi ated col um headi ngs in this table, fromleft to right, are as follows. See the sections in parentheses for val ues of the codes or nore i nf or mation.

Eqn \# Equation number (Reference: Li brary Editor: Requi rements, possibilities and assumptions for BIOPAK equations)
SPP Species (Appendi x: Codes)
LF Lifeform (Appendi x : Codes)
Pl nt Comp Pl ant component (Appendi x: Codes)
GA Geographic area (Appendi x: Codes)
ss Seral stage (Appendi x : Codes)
LE \# Local equati on number (Ref erence: Li brary Editor: Equation keys)
TL Taxonomic lifeform (Sane codes as Iifeform see Appendix: Codes)
Eq Tp Equation type (Reference: Li brary Editor, table 1)
min, max Mnimum naxi mum of the paraneter val ues used to build the equation
Sample size of the data set used to build the equation
R^2 R-squared of the plant component prediction equation

$\begin{aligned} & 1080 \\ & 1138 \end{aligned}$	$\begin{aligned} & \text { EPPA } \\ & \text { EPPA } \end{aligned}$
1082	EPPA
205	EPPA
1083	EPWA
145	EPWA
206	EPWA
1084	EQUIS
1088	GATR
242	GATR
1089	GNMI
837	G00B
803	G00B
226	GYDR
1090	HIAL
243	HIAL
794	LAPO
793	LIB02
244	LIB02
1091	LOCR
163	LOOB
170	LULA
1059	LULA
1134	LULA
1140	LULA
213	MADI2
229	MADI2
1135	5 MADIA
172	2 MIGU
214	MOUN
230	MOUN
967	MUMO
968	MUMO
969	MUMO
150	OXOR
151	PEFR2
277	PEFR2
792	2 PERA
153	POMU
210	POMU
204	POMU
155	5 PTAQ
1099	PTAQ
1141	1 PTAQ
1122	PTAQ
154	4 PTAQ
156	PTAQ
562	2 PTAQ
835	PYSE
235	5 RUPE
215	5 RUPE
1112	2 SEJA
158	SESY
1113	3 SESY
1142	SESY
1143	3 SESY
1144	4 SESY
157	SESY
160	SESY
161	1 SESY
159	SESY
563	SESY
171	1 SETR
953	3 SIL02
954	4 SILO2
796	6 SMST
162	STCO4
836	THOC
236	6 TITR
216	6 TITR

H BAT	W	E	02	H 17	COV	0.2	22.0	DBA	0.1	1.0	25	$0.92!$
H BAT	W	E	03	H	17	LEN	15.0	95.0	DBA	0.1	1.0	23

94 CACH	S BBL	W E	01	T 2 DB	DBA 0.6	5.5				24	0.90
91 CACH	S BFN	W E	E 01	T 2 DB	DBA 0.4	5.5				30	0.75
90 CACH	S BFT	W E	O1	T 2 DB	DBA 0.4	5.5				30	0.77
96 CACH	S BST	W E	E 01	T 2 DB	DBA 0.4	5.5				30	0.96
550 CACH	S PFN	W E	01	T 2 DB	DBA 0.4	5.5				30	0.74
549 CACH	S PFT	W E	E 01	T 2 DB	DBA 0.4	5.5				30	0.76
267 CASE	S BAP	S G	G 01	S 1	COV						
164 CASE	S BAT	S G	G 01	S 1 CO	COV					6	
237 CASE	S BFT	S G	G 01	S 1 CO	COV					3	
268 CECO	S BAP	S G	G 01	S 1	COV					4	
165 CECO	S BAT	S G	G 01	S 1	COV					8	
238 CECO	S BFT	S G	G 01	S 1 CO	COV					4	
183 CEIN	S BAE	W Y	Y 01	S 2 DB	DBA 1.03	4.79				15	0.91
784 CEIN	S BAT	G G	G 01	S 2 DB	DBA 0.3	6.5				46	0.97
184 CEIN	S BAT	W Y	Y 01	S 2 DB	DBA 1.03	4.79				15	0.91
787. CEIN	S BBD	G G	G 01	S 32 DBA	DBA 0.3	6.5				46	0.71
788 CEIN	S BFT	G G	G 01	S 2 DB	DBA 0.3	6.5				46	0.86
182 CEIN	S BFT	W Y	Y 01	S 2 DB	DBA 1.03	4.79				15	0.80
786 CEIN	S BST	G G	G 01	S 2 DB	DBA 0.3	6.5				46	0.97
180 CESA	S BAE	W Y	Y 01	S 2 DB	DBA 0.46	5.7				12	0.99
1066 CESA	S BAT	W E	E 02	S 2 DB	DBA 0.1	0.3				11	0.75
1067 CESA	S BAT	W E	E 03	S 2 LE	EN 2.0	17.0				10	0.94
181 CESA	S BAT	W Y	Y 01	S 2 DB	DBA 0.46	5.7				12	0.98
179 CESA	S BFT	W Y	Y 01	S 2 DBA	DBA 0.46	5.7				12	0.92
928 CEVE	S BAL	E Y	Y 01	S 42 DB	DBA 0.3	11.7	HT	21.0	188.0	150	0.98
739 CEVE	S BAL	E Y	Y 02	S 2 DB	DBA 0.3	11.7				150	0.96
622 CEVE	S BAT	E E	E 01	S 35 LE	EN		WID			10	0.98
632 CEVE	S BAT	E E	02	S 2 V	VOL 21.92	3588.				10	0.98
296 CEVE	S BAT	E Y	$y 01$	S 42 DB	DBA 0.3	11.7	HT	21	188.	150	0.97
740 CEVE	S BAT	E Y	y 02	S 2 DB	DBA 0.3	11.7				150	0.96
768 CEVE	S BAT	R G	G 01	S 2 DB	DBA 0.6	2.5				30	0.92
1068 CEVE	S BAT	W E	E 01	S 1 CO	COV 0.1	0.5				7	0.84
681 CEVE	S BFT	E Y	Y 01	S 17 DB	DBA 0.3	11.7	LEN	8.	266.	150	0.92
741 CEVE	S BFT	E Y	Y 02	S 2 DB	DBA 0.3	11.7				150	0.91
975 CEVE	S BFT	R G	G 01	S 2 DB	DBA 0.6	2.5				30	0.67
1036 CEVE	S BFT	R G	G 02	S 45 BIO	8108.04	565.0				30	0.85
694 CEVE	S BST	E Y	Y 01	S 42 DB	DBA 0.3	11.7	HT	21.	188.	150	0.97
742 CEVE	S BST	E Y	Y 02	S 2 DB	DBA 0.3	11.7				150	0.95
780 CEVEL	S BAT	$G \quad G$	G 01	S 2 DBA	DBA 0.3	8.5				75	0.95
783 CEVEL	S BBD	G G	G 01	S 41 DBA	dBA 0.3	8.5				75	0.81
781 CEVEL	S BFT	G G	G 01	S 2 DB	DBA 0.3	8.5				75	0.8 !
782 CEVEL	S BST	G G	G 01	S 2 DB	dBA 0.3	8.5				75	0.95
98 CEVEV	S AFN	W M	M 01	S 11 DB	DBA 1.0	7.0				43	0.85
97 CEVEV	S BAT	W M	M 01	S 10 LE	LEN 100.	250.	DBA	1.0	7.0	43	0.96
99 CEVEV	S BRL	W M	M 01	S 1 Bl	BIO					24	0.84
551 CEVEV	S PFN	W Y	Y 01	S 11 DB	DBA	7.0				43	0.85
623 CHNA	S BAT	E E	01	S 35 LE	Len		WID			10	0.98
633 CHNA	S BAT	E E	E 02	S 2 Vo	VOL 1.17	1788.				10	0.99
798 CHUM	S BAT	W G	G 01	S 1 CO	COV 3.	40.				10	0.98
1101 COCO2	S BST	G G	G 01	S 9 DBA	DBA 0.2		HT	30.48		117	
1100 COC 02	S VST	G G	G 01	S 9 DB	DBA 0.2		HT	30.48		117	0.97
105 COCOC	S AFT	W M	M 01	S 2 DB	DBA 0.7	2.9				20	0.81
106 COCOC	S BAE	W M	M 01	S 2 DB	DBA 0.7	2.9				20	0.89
269 COCOC	5 BAP	S G	G 01	S 1 CO	COV						
166 cococ	S BAT	S G	G 01	S 1	COV					8	
239 cococ	S BFT	S G	G 01	S 1	COV					4	
104 cococ	S BFT	W M	M 01	S 2 DB	DBA 0.7	2.9				20	0.82
553 COCOC	S PFT	W M	M 01	S 2 DBA	DBA 0.7	2.9				20	0.81
270 COST	S BAP	S G	G 01	S 1	COV					4	
778 COST	S BAT	R G	G 02	S 2 DB	DBA 0.6	3.4				31	0.93
167 COST	S BAT	S G	G 01	S 1	COV					8	
985 COST	S BFT	R G	G 02	S 2 DB	DBA 0.6	3.4				31	0.58
1037 COST	S BFT	R G	G 03	S 1 Blo	BIO 21.93	683.7				31	0.85
240 COST	S BFT	S G	G 01	S 1	COV						
148 GASH	S AFT	W E	E 01	S 1 col	COV 2.	60.				12	0.91
1087 GASH	S BAT	W E	E 01	S 2 CO	COV 0.1	10.5				13	0.95
147 GASH	S BFT	W E	E 01	S 1 Col	COV 2.	60.				12	0.97
146 GASH	S BFT	W 0	0	S 2 CO	COV 5.	85.				32	$0.8 i$
149 GASH	S BST	W E	E 01	S 1 Cov	COV 2.	60.				12	0.95
561 GASH	S PFT	W E	E 01	S 1 CO	COV 2.	60.				12	0.91

[^1]BAT G G 01 T 9
BBL G G 01 T 9 RBH 4:5 30:4 HT 319: 2580: 45 9:53

	ABAM	T 8BL	W	0	01	T 2	DBH	H 11.7	90.4					0.96
882	ABAM	T BBS	G	G	01	T 9	DBH	H 4.5	30.4	HT	310.	2580.	45	0.53
884	ABAM	T BFT	G	G	01	T 9	DBH	4.5	30.4	HT	310.	2580.	45	0.54
23	ABAM	T 8FT	W	0	01	T 2	DBH	H 11.7	90.4				9	0.97
881	ABAM	T BSB	G	G	01	T 9	DBH	H 4.5	30.4	HT	310.	2580.	45	0.94
248	ABAM	T BSB	W	M	01	T 2	DBH	H 8.1	109.3				143	0.85
361	ABAM	T BSB	W	M	02	T 2	DBH	H 13.3	80.0				68	0.91
26	ABAM	T BSB	W	0	01	T 2	DBH	H 11.7	90.4				14	0.99
319	ABAM	T BSB	W	0	02	T 2	2 DBH	H 8.1	109.3				75	0.83
250	ABAM	T BST	W	M	01	T 2	DBH	H 8.1	109.3				143	0.94
362	ABAM	T BST	W	M	02	T 2	DBH	H 13.3	80.0				68	0.97
320	ABAM	T BST	W	0	01	T 2	DBH	H 8.1	109.3				75	0.93
880	ABAM	T BSW	G	G	01	T 9	DBH	H 4.5	30.4	HT	310.	2580.	45	0.96
249	ABAM	T BSW	W	M	01	T 2	DBH	H 8.1	109.3				143	0.94
360	AbaM	T BSW	W	M	02	T 2	DBH	H 13.3	80.0				68	0.97
25	ABAM	BSW	W	0	01	T 2	DBH	H 11.7	90.4				14	0.99
318	ABAM	T BSW	W	0	02	T 2	2 DBH	H 8.1	109.3				75	0.93
379	ABCO	T BSB	S	0	01	T 2	DBH	H 14.4	158.4				56	0.94
380	ABCO	T BST	S	0	01	T 2	DBH	H 14.4	158.4				56	0.97
378	ABCO	T BSW	S	0	01	T 2	DBH	H 14.4	158.4				56	0.97
708	ABCO	T VSW	C	M	01	T 37	37 DBH	H 17.78	63.5	HT			378	0.96
890	ABGR	T BAT	G	G	01	T 9	DBH	H 4.6	43.9	HT	340.	3480.	40	0.96
889	ABGR	T BBL	G	G	01	T 9	DBH	H 4.6	43.9	HT	340.	3480.	40	0.45
888	ABGR	T BBS	G	G	01	T 9	DBH	H 4.6	43.9	HT	340.	3480.	40	0.45
523	ABGR	T BCD	R	G	01	T 24	4 DBH	H 2.54	50.8	HT			22	0.93
524	ABGR	T BCD	R	G	02	T 2	DBH	H 2.54	45.72				22	0.93
525	ABGR	T BCD	R	G	03	T 1	1 BIO							
589	ABGR	T BCD	R	M	01	T 2	DBH	H 2.54	30.48				15	0.83
502	ABGR	T BCL	R	G	01	T 2	DBH	H 2.54	101.6				35	0.95
577	ABGR	T BCL	R	M	01	T 4	4 HT	T 112.8	289.6				9	0.85
588	ABGR	T BCL	R	M	02	T 2	DBH	H 2.54	30.48				15	0.92
570	ABGR	T BCL	R	Y	01	T 1	1 HT	T 94.5	426.7				12	0.79
590	ABGR	T BCT	R	M	01	T 2	DBH	H 2.54	30.48				15	0.94
891	ABGR	T BFT	G	G	01	T 9	DBH	H 4.6	43.9	HT	340.	3480.	40	0.46
887	7 ABGR	T BSB	G	G	01	T 9	DBH	H 4.6	43.9	HT	340.	3480.	40	0.79
613	3 ABGR	T BST	R	M	01	T 9	DBH	H.	10.16	HT				0.97
614	4 ABGR	T BST	R	M	02		4 DBH	H.	10.16				8	0.87
600	ABGR	T BST	R	Y	01	T 34	4 DBH	H 0	10.16				12	0.99
886	ABGR	T BSW	G	G	01	T 9	DBH	H 4.6	43.9	HT	340.	3480.	40	0.95
709	ABGR	T VSW	R	M	01	T 37	37 DBH	H 17.78	58.42	HT			50	0.97
20	ABIES	T BBL	G	M	01	T 2	2 DBH	H 8.7	111.0				26	0.95
19	ABIES	T BFT	G	M	01	T 2	2 DBH	H 8.7	111.0				25	0.94
22	ABIES	T BSB	G	M	01	T 2	2 DBH	H.7	111.0				20	0.98
21	ABIES	T BSW	G	M	01	T 2	2 DBH	8.7	111.0				20	0.97
921	1 ABLA2	T BAT	G	G	01	T 9	9 DBH	H 3.5	44.4	HT	220.	2790.	89	0.95
919	ABLA2	T BBL	G	G	01	T 9	9 DBH	H 3.5	44.4	HT	220.	2790.	89	0.78
918	8 ABLA2	T BBS	G	G	01	T 9	9 DBH	H 3.5	44.4	HT	220.	2790.	89	0.47
527	ABLA2	T BCD	R	G	01	T 25	5 DBH	H 2.54	33.02	HT			16	0.93
528	ABLA2	T BCD	R	G	02	T 2	2 DBH	H 2.54	33.02				16	0.91
529	ABLA2	T BCD	R	G	03	T 1	1 BIO							
505	ABLA2	T BCL	R	G	01	T 9	9 DBH	H 2.54	33.02	CR			16	0.95
506	ABLA2	T BCL	R	G	02	T 4	4 DBH	H 2.54	33.02				16	0.84
568	ABLA2	$T \mathrm{BCL}$	R	Y	01	T 2	2 HT	76.2	301.8				13	0.96
920	ABLA2	T BFT	G	G	01	T 9	9 DBH	H 3.5	44.4	HT	220	2790.	89	$0.5 €$
917	7 ABLA2	T BSB	G	G	01	T 9	9 DBH	BH 3.5	44.4	HT	220	2790.	89	0.94
409	ABLA2	T BSB	R	0	01	T 2	2 DBH	H 15.7	46.9				11	0.64
322	ABLA2	T BSB	W	0	01	T 2	2 DBH	H 15.6	68.7				17	0.96
397	ABLA2	T BSB	W	0	02	T 2	2 DBH	H 15.6	68.7				21	0.88
605	5 Ablaz	T BST	R	M	01	T 26	26 DBH	H 0.	10.16	HT			12	0.99
606	6 ABLA2	T BST	R	M	02	T 28	8 DBH	H 0.	10.16				12	0.99
410	ABLA2	T BST	R	0	01	T 2	2 DBH	H 15.7	46.9				11	0.98
323	ABLA2	T BST	W	0	01	T 2	2 DBH	H 15.6	68.7				17	0.98
398	ABLA2	T BST	W	0	02	T 2	2 DBH	H 15.6	68.7				21	0.97
910	0 ABLA2	T BSW	G	G	01	T 9	9 DBH	BH 3.5	44.4	HT	220.	2790.	89	0.99
408	ABLA2	T BSW	R	0	01	T 2	2 DBH	H 15.7	46.9				11	0.95
321	1 ABLA2	T BSW	W	0	01	T 2	2 DBH	H 15.6	68.7				17	0.98
396	6 ABLA2	T BSW	W	0	02	T 2	2 DBH	H 15.6	68.7				21	0.97
382	ABMA	T BSB	S	0	01	T 2	2 DBH	H 18.8	143.2				31	0.91
383	ABMA	T BST	S	0	01	T 2	2 DBH	H 18.8	143.2				31	0.98
381	1 ABMA	T BSW	S	0	01	T 2	2 DBH	H 18.8	143.2				31	0.98

425	CA
42	CACH
41	CAC
424	CAC
45	CAC
40	CACH
44	CACH
43	CA
663	CAC
664	CA
426	CACH
38	CA
386	6 CADE
384	CAD
	CE
46	
49	
48	CE
927	7 CH
925	CHN
924	CH
926	C
923	3 CH
325	CHNO
326	CHN
929	CHI
324	CH
	JUO
	JUOC
51	JUOC
50	JUOC
54	Ju
53	JU0
711	1 JUOC
712	2 JUOC
57	JUOC
6	6 JU
13	3 Juc
710	0 JUS
897	LAO
895	LAC
894	LAC
503	LAC
576	6 LAC
896	6 LAOC
893	3 LAOC
603	3 LAOC
604	4 LAC
892	2 LA
488	8 LADC
489	LAOC
490	O LAOC
491	1 LAOC
492	2 LAOC
493	3 LAOC
494	4 LAOC
441	1 LAOC
440	LAOC
434	4 LID
433	3 LID
677	7 LID
678	8 LIDE
435	5 LIDE
616	6 PIAB
533	3 PIA
534	3 PIAL
535	35 PIAL
512	2 PI
513	3 PI
74	4 PIA

T	BBD	W	G	01	T 2	DBH 2.54	61.				30	0.88
T	BBD	W	0	01	T 2	DBH 5.8	36.0				19	0.81
T	BBL	W	0	01	T 2	DBH 5.8	36.0				19	0.89
T	BCL	W	G	01	T 2	DBH 2.54	61.				30	0.94
T	BFN	W	0	01	T 2	DBH 5.8	36.0				19	0.56
T	BFT	W	0	01	T 2	DBH 5.8	36.0				19	0.81
T	BSB	W	0	01	T 2	DBH 5.8	36.0				19	0.97
T	BSW	W	0	01	T 2	DBH 5.8	36.0				19	0.98
T	VAE	C	G	01	T 17	DBH 10.	80.	HT	60.	300.	60	0.96
T	VSW	C	G	01	T 17	DBH 10.	80.	HT	60.	300.	60	0.95
T	VSW	W	G	01	T 2	DBH 2.54	61.				30	0.99
T	BSB	S	0	01	T 2	DBH 25.0	143.9				25	0.94
T	BST	S	0	01	T 2	DBH 25.0	143.9				25	0.97
T	BSW	S	0	01	T 2	DBH 25.0	143.9				25	0.96
T	BBL	W	G	01	T 2	DBH 15.5	60.2				6	0.94
T	BFT	C	0	01	T 2	DBH 15.5	60.2				6	0.91
T	BSB	W	G	01	T 2	DBH 15.5	60.2				6	0.95
T	BSW	W	G	01	T 2	DBH 15.5	60.2				6	0.96
T	BAT	G	G	01	T 9	DBH 8.2	42.4	HT	520.	3020.	41	0.99
T	BBL	G	G	01	T 9	DBH 8.2	42.4	HT	520.	3020.	41	0.63
T	BBS	G	G	01	T 9	OBH 8.2	42.4	HT	520.	3020.	41	0.50
T	BFT	G	G	01	T 9	DBH 8.2	42.4	HT	520.	3020.	41	0.59
T	BSB	G	G	01	T 9	DBH 8.2	42.4	HT	520.	3020.	41	0.91
T	BSB	W	0	01	T 2	DBH 18.9	109.1				26	0.83
T	BST	W	0	01	T 2	DBH 18.9	109.1				26	0.96
T	BSW	G	G	01	T 9	DBH 8.2	42.4	HT	520.	3020.	41	0.91
T	BSW	W	0	01	T 2	DBH 18.9	109.1				26	0.96
T	AFT	E	G	01	T 2	CIR 14.5	273.0				10	0.99
T	BBD	E	G	01	T 2	CIR 14.5	273.0				10	0.91
T	BBL	E	G	01	T 2	CIR 14.5	273.0				10	0.99
T	BFT	E	G	01	T 2	CIR 14.5	273.0				10	0.99
T	BSB	E	G	01	T 2	CIR 14.5	273.0				10	0.99
T	BSW	E	G	01	T 2	CIR 14.5	273.0				10	0.99
T	VAE	R	G	01	T 38	OBA 10.16	127.0	HT	182.9	1524.	137	0.76
T	VAE	R	G	02	T 38	DBA 10.16	101.6	HT	182.9	1067.	45	0.76
T	VSB	E	G	01	T 2	2 CIR 14.5	273.0				10	0.98
T	VSW	E	G	01	T 2	CIR 14.5	273.0				10	0.99
T	VSW	E	G	02	T 39	DBH 12.7	77.22	HT	609.6	1829.	73	
T	VAE	R	G	01	T 38	DBA 10.16	88.9	HT	121.9	914.4	197	0.70
T	BAT	G	G	01	T 9	DBH 3.1	57.5	HT	290.	3850.	41	0.88
T	BBL	G	G	01	T 9	9 DBH 3.1	57.5	HT	290.	3850.	41	0.14
T	BBS	G	G	01	T 9	9 DBH 3.1	57.5	HT	290.	3850.	41	0.18
T	BCL	R	G	01	T 2	2 DBH 2.54	88.9				45	0.96
T	BCL	R	Y	01	T 32	HT 85.3	548.6				12	0.8 C
T	BFT	G	G	01	T 9	9 DBH 3.1	57.5	HT	290.	3850.	41	0.1 C
T	BSB	G	G	01	T 9	9 DBH 3.1	57.5	HT	290.	3850.	41	0.97
T	BST	R	Y	01	T 9	DBH 0.	10.16	HT			12	0.9 C
T	BST	R	Y	02	T 28	DBH 0.	10.16				12	0.9 C
T	BSW	G	G	01	T 9	9 DBH 3.1	57.5	HT	290.	3850.	41	0.91
T	VQW	R	M	01	T 21	1 DBH 7.62	45.72	HT	609.6	3353.	238	
T	VQW	R	M	02	T 21	1 DBH 10.16	53.34	HT	914.4	3353.	220	
T	VQW	R	M	03	T 21	1 DBH 12.7	53.34	HT	1219.	. 3353.	196	
T	VQW	R	M	04	T 21	1 DBH 15.24	53.34	HT	1219.	. 3353.	168	
T	VQW	R	M	05	T 21	1 OBH 17.78	53.34	HT	1524.	3353.	149	
T	VQW	R	M	06	T 21	1 DBH 20.32	53.34	HT	1829.	3353.	133	
T	VQW	R	M	07	T 21	1 DBH 22.86	53.34	HT	1829.	. 3353.	115	
T	VSB	R	M	01	T 23	3 DBH 5.08	53.34	HT	609.6	3353.	259	
T	VSW	R	M	01	T 22	2 DBH 5.08	53.34	HT	609.6	3353.	259	
T	BBD	W	G	01	T 2	2 DBH 2.54	66.0				31	0.71
T	BCL	W	G	01	T 2	2 DBH 2.54	66.0				31	0.94
T	VAE	C	G	01	T 17	7 DBH 10.	100.	HT	60.	330.	60	0.9;
T	VSW	C	G	01	T 17	7 DBH 10.	100.	HT	60.	330.		0.98
T	VSW	W	G	01	T 2	2 DBH 2.54	. 66.0				31	0.98
T	BAT	R	Y	01	T 2	2 HT 0.	457.2				42	0.91
T	BCD	R	G	01	T 9	9 DBH 2.54	27.94	LEN			13	0.81
T	BCD	R	G	02	T 9	9 DBH 2.54	27.94	HT			13	0.8 !
T	BCD	R	G	03	T 4	4 DBH 2.54	27.94				13	$0.8 i$
T	BCL	R	G	01	T 24	4 DBH 2.54	20.32	$C R$			10	0.9 !
	BCL	R	G	02	T 4	4 DBH 2.54	20.32				10	0.91
	BCL	R	Y	01	T 4	4 HT 76.2	304.8				10	0.9:

607 PIAL	T BST	R	M	01	T 9	DBH 0.	10.16	HT			8	0.95
608 PIAL	T BST	R	M	02	T 4	4 DBH 0.	10.16				8	0.91
697 PICO	T AFT	R	M	01	T 1	SPA					80	0.929
698 PICO	T AFT	R	M	02	T 1	1 SPA					80	0.775
699 PICO	T AFT	R	M	03	$T 1$	1 SPA					80	0.953
700 PICO	T AFT	R	M	04	T 1	1 SPA					80	0.633
642 PICO	T BAT	E	E	01	$T 2$	2 DBA 1.4	7.9				15	0.992
650 PICO	T BAT	E	E	02	T 2	2 HT 38.	347.				15	0.977
646 PICO	T BAT	E	E	03	T 36	DBA 1.4	7.9	HT	38.	347.	15	0.990
909 PICO	T BAT	G	G	01	T 9	9 DBH 3.3	48.9	HT	230.	3960.	98	0.93
907 PICO	T BBL	G	G	01	T 9	DBH 3.3	48.9	HT	230.	3960.	98	0.42
685 PICO	T BBL	R	M	01	T 4	4 DBH 0.	10.				80	0.829
684 PICO	T BBL	R	M	02	T 4	4 DBH 10.	60.				80	0.873
64 PICO	T BBL	R	M	03	T 2	2 DBH 2.5	28.7				19	0.89
906 PICO	T BBS	G	G	01	T 9	9 DBH 3.3	48.9	HT	230.	3960.	98	0.35
530 PICO	T BCD	R	G	01	T 30	DBH 2.54	25.4	BIO				
531 PICO	T BCD	R	G	02	T 1 B	1 BIO						
507 PICO	T BCL	R	G	01	T 24	DBH 2.54	40.64	CR			45	0.88
508 PICO	T BCL	R	G	02	T 2	DBH 2.54	40.64				45	0.88
573 PICO	T BCL	R	Y	01	T 4	4 HT 48.8	399.3				12	0.96
908 PICO	T BFT	G	G	01	T 9	DBH 3.3	48.9	HT	230.	3960.	98	0.24
63 PICO	T BFT	R	M	01	T 2	DBH 2.5	28.7				19	0.84
686 PICO	T BFT	R	M	02	T 4	4 DBH 20.	60.				80	0.906
687 PICO	T BFT	R	M	03	T 4	4 DBH 10.	30.				80	0.828
688 PICO	T BFT	R	M	04	T 4	4 DBH 10.	30.				80	0.841
689 PICO	T BFT	R	M	05	T 4	4 DBH 0.	30.				80	0.839
690 PICO	T BFT	R	M	06	T 1	1 SPA					80	0.929
691 PICO	T BFT	R	M	07	T 1	1 SPA					80	0.775
692 PICO	T BFT	R	M	08	T 1	1 SPA					80	0.953
693 PICO	T BFT	R	M	09	T 1	1 SPA					80	0.633
695 PICO	T BKL	R	M	01	T 4	4 DBH 10.	60.				70	0.813
696 PICO	T BKL	R	M	02	T 4	4 DBH 0.	10.				70	0.913
904 PICO	T BSB	G	G	01	T 9	DBH 3.3	48.9	HT	230.	3960.	98	0.90
412 PICO	T BSB	R	0	01	T 2	2 DBH 12.2	48.5				30	0.386
643 PICO	T BST	E	E	01	T 2	DBA 1.4	7.9				15	0.996
647 PICO	T BST	E	E	02	T 36	DBA 1.4	7.9	HT	38.	347.	15	0.998
651 PICO	T BST	E	E	03	T 2	2 HT 38.	347.				15	0.990
65 PICO	T BST	R	M	01	T 2	2 DBH 2.5	28.7				19	0.98
682 PICO	T BST	R	M	02	T 4	4 DBH 10.	60.				80	0.961
683 PICO	T BST	R	M	03	T 4	4 DBH 0.	10.				80	0.970
413 PICO	T BST	R	0	01	T 2	2 DBH 12.2	48.5				30	0.946
597 PICO	T BST	R	Y	01	T 32	DBH 0.	10.16				8	0.97
905 PICO	T BSW	G	G	01	T 9	OBH 3.3	48.9	HT	230.	3960.	98	0.95
411 PICO	T BSW	R	0	01	T 2	2 DBH 12.2	48.5				30	0.957
481 PICO	T VQW	R	M	01	T 21	1 DBH 7.62	45.72	HT	609.6	3048.	213	
482 PICO	T VQW	R	M	02	T 21	1 DBH 10.16	45.72	HT	914.4	3048.	193	
483 PICO	T VQW	R	M	03	T 21	1 DBH 12.7	45.72	HT	914.4	3048.	169	
484 PICO	T VQW	R	M	04	T 21	1 DBH 15.24	45.72	HT	1219.	3048.	151	
485 PICO	T VQW	R	M	05	T 21	1 DBH 17.78	45.72	HT	1524.	3048.	143	
486 PICO	T VQW	R	M	06	T 21	1 DBH 20.32	45.72	HT	1524.	3048.	133	
487 PICO	T VQW	R	M	07	T 21	1 DBH 22.86	45.72	HT	1524.	3048.	116	
439 PICO	T VSB	R	M	01	T 21	1 DBH 5.08	45.72	HT	609.6	3048.	227	
438 PICO	T VSW	R	M	01	T 22	DBH 5.08	45.72	HT	609.6	3048.	227	
879 PIEN	T BAT	G	G	01	T 9	9 DBH 4.9	57.6	HT	320.	4080.	43	0.98
877 PIEN	T BBL	G	G	01	T 9	9 DBH 4.9	57.6	HT	320.	4080.	43	0.57
876 PIEN	T BBS	G	G	01	T 9	9 DBH 4.9	57.6	HT	320.	4080.	43	0.24
526 PIEN	T BCD	R	G	01	T 2	2 DBH 2.54	58.42				14	0.87
504 PIEN	T BCL	R	G	01	T 2	2 DBH 2.54	73.66				29	0.96
567 PIEN	T BCL	R	Y	01	T 2	2 HT 57.9	317.0				12	0.94
878 PIEN	T BFT	G	G	01	T 9	9 DBH 4.9	57.6	HT	320.	4080.	43	0.37
875 PIEN	T BSB	G	G	01	T 9	9 DBH 4.9	57.6	HT	320.	4080.	43	0.95
415 PIEN	T BSB	R	0	01	T 2	2 DBH 17.0	66.8				16	0.900
416 PIEN	T BST	R	0	01	T 2	2 DBH 17.0	66.8				16	0.971
594 PIEN	T BST	R	Y	01	$T 2$	2 DBH 0.	10.16				10	0.96
874 PIEN	T BSW	G	G	01	T 9	9 DBH 4.9	57.6	HT	320.	4080.	43	0.99
414 PIEN	T BSW	R	0	01	T 2	2 DBH 17.0	66.8				16	0.9138
388 PIJE	T BSB	S	0	01	T 2	2 DBH 22.4	133.1				21	0.9131
389 PIJE	T BST	S	0	01	T 2	2 DBH 22.4	133.1				21	0.9;78
387 PIJE	T BSW	S	0	01	T 2	2 DBH 22.4	133.1				21	0.9\%9
67 PILA	T 88L	W	0	01	T 2	2 DBH 20.6	43.3				5	0.81

841 PSME	T BBS	$C \quad Y$	Y 04	T 90	OBH 4.5	66.0	HT	410.	4400.	49	0.64
858 PSME	T BBS	G	G 01	T	DBH 3.1	63.2	HT	260.	3450.	41	0.45
538 PSME	T BCD	R	G 01	T 24	DBH 2.54	86.36	LEN			21	0.98
539 PSME	T BCD	R G	G 02	T 28	DBH 2.54	86.36				21	0.91
586 PSME	T BCD	R M	M 01	$T 2$	DBH 2.54	27.94				15	0.891
419 PSME	T BCD	W	O 01	T 2 D	DBH 60.	160.				32	0.79
752 PSME	T BCL	C	Y 01	T 2	DBH 8.9	26.1				240	0.78
761 PSME	T BCL	C Y	Y 02	T 17	DBH 8.9	26.1	HT	990.	1840.	240	0.77
826 PSME	T BCL	C Y	Y 04	$T 2$	DBH					40	0.93
518 PSME	T BCL	R	G 01	T 2 D	DBH 2.54	43.18				41	0.93
519 PSME	T BCL	R	G 02	T 4	DBH 2.54	86.36				41	0.85
579 PSME	T BCL	R M	M 01	T 2	HT 109.7	475.5				10	0.66
584 PSME	T BCL	R M	M 02	T 33	DBH 2.54	27.94	HT			15	0.96
585 PSME	T BCL	R M	M 03	$T 2$	DBH 2.54	27.94				15	0.90
566 PSME	$T \mathrm{BCL}$	R Y	Y 01	T 2	HT 112.8	347.5				11	0.83
417 PSME	T BCL	W 0	001	T 13	DBH 60.	160.				32	0.73
587 PSME	T BCT	R M	M 01	$T 2$	DBH 2.54	27.94				15	0.94
7 PSME	T BFN	W	O 01	T 2	DBH 25.9	162.0				29	0.93
297 PSME	T BFT	C	Y 01	T 2	DBH 1.4	13.4				18	0.94
303 PSME	T BFT	C	Y 02	T 2	DBA 2.1	21.9				18	0.94
756 PSME	T BFT	C	Y 03	T 2	DBH 8.9	26.1				240	0.76
765 PSME	T BFT	C	Y 04	T 17	DBH 8.9	26.1	HT	990.	1840.	240	0.76
823 PSME	T BFT	C Y	Y 05	T 2	DBH					40	0.93
843 PSME	T BFT	C	Y 06	T 9	DBH 4.5	66.0	HT	410.	4400.	49	0.56
860 PSME	T BFT	G	G 01	T 9	DBH 3.1	63.2	HT	260.	3450.	41	0.40
1 PSME	T BFT	W	G 01	T 2	DBH 1.8	162.0				123	0.86
247 PSME	T BFT	W 0	001	T 2	DBH 110.	190.				7	0.599
445 PSME	T BFT	W 0	002	T 9	DBH 1.0	220.7	HT			171	0.80
188 PSME	T BFT	W	Y 01	T 2	DBA 0.29	6.1				23	0.906
6 PSME	T BRL	W	G 01	T 2	DBH 2.3	135.0				26	0.96
450 PSME	T BRT	W	G 02	T 9	DBH 2.5	60.0	HT			13	0.99
754 PSME	T BSB	c	Y 01	T 2	DBH 8.9	26.1				240	0.87
763 PSME	T BSB	C	Y 02	T 17	DBH 8.9	26.1	HT	990.	1840.	240	0.88
828 PSME	T BSB	C	Y 04	T 2	DBH					40	0.85
840 PSME	T BSB	C	Y 05	T 9	DBH 4.5	66.0	HT	410.	4400.	49	0.98
857 PSME	T BSB	G	G 01	T 9	DBH 3.1	63.2	HT	260.	3450.	41	0.80
5 PSME	T BSB	W	G 01	T 2	DBH 1.8	162.0				99	0.98
448 PSME	T BSB	W	G 02	T 9	DBH 2.5	162.0	HT			120	0.68
254 PSME	T BSB	W	M 01	T 2	DBH 17.0	212.7				215	0.915
364 PSME	T BSB	W M	M 02	T 2	DBH 24.6	206.5				34	0.958
328 PSME	T BSB	W	001	T 2	DBH 31.5	215.0				45	0.835
343 PSME	T BSB	W	002	T 2	DBH 17.2	177.4				116	0.933
352 PSME	T BSB	W	$0 \quad 03$	T 2	DBH 38.6	161.0				20	0.862
300 PSME	T BST	C	Y 01	T 2	DBH 1.4	13.4				18	0.97
306 PSME	T BST	C	Y 02	T 2	DBA 2.1	21.9				18	0.97
751 PSME	T BST	C	y 03	T 2	DBH 8.9	26.1				240	0.93
760 PSME	T BST	C	Y 04	T 17	DBH 8.9	26.1	HT	990	1840.	240	0.96
829 PSME	T BST	C	Y 05	T 2	DBH					40	0.89
609 PSME	T BST	R	M 01	T 4	DBH 0.	10.16				8	0.97
595 PSME	T BST	R	Y 01	T 4	DBH 0.	10.16				12	0.99
449 PSME	T BST	W	G 01	T 9	DBH 2.5	162.0	HT			144	0.74
256 PSME	T BST	W	M 01	T 2	DBH 17.0	212.7				215	0.973
365 PSME	T BST	W	M 02	T 2	DBH 24.6	206.5				34	0.990
329 PSME	T BST	W	$0 \quad 01$	T 2	DBH 31.5	215.0				45	0.957
344 PSME	T BST	W	002	T 2	DBH 17.2	177.4				116	0.972
353 PSME	T BST	W	$0 \quad 03$	T 2	DBH 38.6	161.0				20	0.937
753 PSME	T BSW	C	Y 02	T 2	DBH 8.9	26.1				240	0.92
762 PSME	T BSW	C	y 03	T 17	DBH 8.9	26.1	HT	990	1840.	240	0.93
827 PSME	T BSW	C	y 04	T 2	DBH					40	0.89
839 PSME	T BSW	C	Y 05	T 9	DBH 4.5	66.0	HT	410.	4400.	49	0.99
856 PSME	T BSW	G	G 01	T 9	DBH 3.1	63.2	HT	260.	3450.	41	0.80
4 PSME	T BSW	W	G 01	T 2	DBH 1.8	162.0				99	0.99
447 PSME	T BSW	W	G 02	T 9	DBH 2.5	162.0	HT			120	0.88
255 PSME	T BSW	W	M 01	T 2	DBH 17.0	212.7				215	0.970
363 PSME	T BSW	W	M 02	T 2	DBH 24.6	206.5				34	0.987
327 PSME	T BSW	W	001	T 2	D8H 31.5	215.0				45	0.953
342 PSME	T BSW	W	002	T 2	DBH 17.2	177.4				116	0.970
351 PSME	T BSW	W	003	T 2	DBH 38.6	161.0				20	0.928
302 PSME	T HST	C	Y 01	T 2	DBH 1.4	13.4				18	0.83
308 PSME	T HST	C	Y 02	T 2	DBA 2.1	21.9				18	0.7ε

758	PSME	T	PFT	C Y	Y 01	T 2	SPA	43.2	309.7				240	0.69
766	PSME	T	PFT	C Y	Y 02	T 17	DBH	8.9	26.1	HT	990.	1840.	240	0.73
757	PSME	T	PFT	C Y	Y 03	T 2	DBH	8.9	26.1				240	0.73
817	PSME	T	PFT	C Y	Y 04	T	DBH						16	0.94
818	PSME	T	PFT	C Y	Y 05	2	DBH						16	0.94
819	PSME	T	PFT	C Y	Y 06	T 2	2 DBH						8	0.85
820	PSME	T	PFT	C Y	Y 07	T 2	2 SPA						16	0.95
821	PSME	T	PFT	C Y	Y 08	T 2	2 SPA						16	0.95
822	PSME	T	PFT	C Y	Y 09	T 2	2 SPA						8	0.85
495	PSME	T	VQW	R M	M 01	T 21	1 DBH	7.62	55.88		609.6	3048.	332	
496	PSME	T	VQW	R M	M 02	T 21	DBH	10.16	66.04	HT	914.4	3353.	300	
497	PSME	T	VQW	R M	M 03	T 21	1 DBH	H 12.7	66.04	HT	914.4	3353.	273	
498	PSME	T	VQW	R M	M 04	T 21	1 DBH	15.24	66.04	HT	1219.	3353.	248	
499	PSME	T	VQW	R M	M 05	T 21	1 DBH	+17.78	55.88	HT	1219.	3048.	221	
500	PSME	T	VQW	R M	M 06	T 21	DBH	20.32	55.88	HT	1524.	3048.	197	
501	PSME	T	VQW	R M	M 07	T 21	1 DBH	22.86	66.04	HT	1524.	3353.	184	
443	PSME	T	VSB	R M	M 01	T 21	1 DBH	H 5.08	55.88	HT	304.8	3048.	361	
299	PSME	T	VST	C Y	Y 01	T 2	2 DBH	1.4	13.4				18	0.97
305	PSME	T	VST	C Y	Y 02	T 2	DBA	2.1	21.9				18	0.97
442	PSME	T	VSW	R M	M 01	T 20	DBH	5.08	55.88	HT	304.8	3048.	361	
665	QUAG	T	VAE	C G	G 01	T 17	DBH	10.	100.	HT	60.	300.	60	0.96
666	QUAG	T	VSW	C G	G 01	T 17	DBH	10.	100	HT	60.	300.	59	0.97
661	QUCH	T	VAE	G G	G 01	T 17	17 DBH	H 10.	80.	HT	60.	300.	58	0.97
662	QUCH	T	VSW	G G	G 01	T 17	17 DBH	10.	80.	HT	60.	300.	58	0.98
659	QUDO	T	VAE	G G	G 01	T 17	DBH	10.	70.	HT	60.	240	60	0.97
660	QUDO	T	VSW	G G	G 01	T 17	DBH	10.	70.	HT	60.	240	60	0.97
667	QUEN	T	VAE	C G	G 01	T 17	17 DBH	H 10.	80.	HT	60.	150.	61	0.96
668	QUEN	T	VSW	C G	G 01	T 17	17 DBH	H 10.	80.	HT	60.	150.	61	0.96
675	QUGA		vaE	G G	G 01	T 17	7 DBH	10.	90.	HT	60.	270.	60	0.96
676	QugA	T	VSW	G G	G 01	T 17	DBH	10.	90.	HT	60.	270.	60	0.95
65	QUKE	T	VAE	G G	G 01	T 17	DBH	10.	110.	HT	90.	420.	59	0.97
657	QUKE	T	VSW	G G	G 01	T 17	DBH	10.	110.	HT	90.	420.	60	0.96
679	QULO	T	VAE	G G	G 01	T 17	DBH	10.	100.	HT	60.	300.	59	0.95
680	QULO	T	VSW	G G	G 01	T 17	DBH	10.	100.	HT	60.	300.	59	0.95
669	QUWI	T	VAE	G G	G 01	T 17	17 DBH	10.	100.	HT	60.	270.	58	0.97
670	QUWI	T	VSW	G G	G 01	T 17	DBH	10.	100.	HT	60.	270	58	0.96
	SEGI	T	BSB	S 0	001	T 2	DBH	96.8	614.3				45	0.72
	SEGI	T	BST	S 0	001	12	DBH	96.8	614.3				45	0.95
393	SEGI	T	BSW	S 0	001	T 2	DBH	96.8	614.3				45	0.9 !
617	THLAPI		BAT	R	Y 01	T 2	2 HT	0.	457.2				37	0.87
192	THPL	T	BAP	W Y	Y 01	T 2	DBA	0.18	2.23					0.98
855	THPL	T	BAT	G G	G 01	T 9	DBH	3.8	68.9	HT	340.	4000	70	0.97
457	THPL	T	BAT	W G	G 01	T 9	DBH	2.5	119.6	HT			26	0.98
1126	THPL	T	BAT	W 0	001	T 1	1 DBA	A 4.2	7.0				4	0.9:
193	THPL	T	BAT	W Y	Y 01	T 2	DBA	0.18	2.23				5	0.9!
853	THPL	T	BBL	G G	G 01	T 9	DBH	3.8	68.9	HT	340	4000.	70	0.61
459	THPL	T	BBL	W G	G 01		DSH	0.2	119.6	HT			50	0.91
1127	THPL	T	BBL	W 0	001		1 OBA	A 4.2	7.0					$0.5!$
852	THPL	T	BBS	G G	G 01	T 9	DBH	3.8	68.9	HT	340.	4000	70	0.21
536	THPL	T	BCD	R G	G 01	T 28	8 DBH	2.54	68.58				20	0.91
592	THPL	T	BCD	R M	M 01	T 2	DBH	2.54	27.94				13	0.91
514	THPL	T	BCL		G 01		5 DBH	H 2.54	93.98	CR			34	0.9;
515	THPL	T	BCL	R G	G 02	T 2	DBH	2.54	93.98				34	0.91
578	THPL	T	BCL	R M	M 01	T 4	HT	112.8	317.0				11	0.91
591	THPL	T	BCL	R M	M 02	T 2	2 DEH	2.54	27.94				13	0.9،
569	THPL	T	BCL	R Y	Y 01	T 4	4 HT	54.9	307.8				12	0.91
593	THPL	T	BCT	R M	M 01	T 2	DBH	2.54	27.94				13	0.9!
854	THPL	T	BFT	G G	G 01	T 9	DBH	3.8	68.9	HT	340.	4000		0.6:
458	THPL	T	BFT	W G	G 01	T 9	DEH	0.2	119.6	6 HT			47	0.9
1128	THPL	T	BFT	W	001	T 1	1 DBA	A 4.2	7.0				4	0.9:
191	THPL	T	BFT	W Y	Y 01	T 2	DBA	0.18	2.23				5	0.91
851	THPL	T	BSB	G G	G 01	T 9	DBH	3.8	68.9	HT	340.	4000.	70	0.8:
461	THPL	T	BSB	W G	G 01	T 9	DBH	2.5	119.6	HT			26	0.6
331	THPL	T	BSB	W 0	001	T 2	2 DBH	11.8	168.5				17	0.9 .
346	THPL	T	BSB	W 0	002	2	2 DBH	17.1	123.7				22	$0.8 €$
355	THPL	T	BSB	W 0	003	T 2	2 DBH	31.2	95.5				12	0.65
400	THPL	T	BSB	W 0	004	T 2	2 DBH	11.8	168.5				52	0.81
612	THPL	T	BST	R M	M 01	T 4	DBH	0.	10.16				10	0.97
599	THPL	T	BST	R Y	Y 01	T 29	DBH	0.	10.16				13	0.95
462	THPL	T	BST	W G	G 01	T 9	DBH	2.5	119.6	6 HT			26	0.9:

335 TSHE	T BST	W	0	02	T	2	DBH	8.9	113.3			8	0	0.97
350 TSHE	T BST	W	0	03	T	2	DBH	14.4	114.8				91	0.91
359 TSHE	T BST	W	0	04	T	2	DBH	24.7	56.0				15	0.91
1132 TSHE	T BST	W	0	05	T	1	DBA	4.2	7.9				4	0.94
173 TSHE	T BSW	C	M	01	T	2	DBH	9.9	47.8				19	0.98
372 TSHE	T BSW	C	M	02	T	2	DBH	19.3	121.6				41	0.98
375 TSHE	T BSW	C	M	03	T	2	DBH	27.5	73.4				31	0.88
312 TSHE	T BSW	C	0	01	T	2	DBH	19.6	172.3				47	0.95
405 TSHE	T BSW	C	Y	01	T	2	DBH	25.6	45.7				25	0.84
868 TSHE	T BSW	G	G	01	T	9	DBH	3.1	70.5	HT	350.	4370.	. 70	0.99
454 TSHE	T BSW	W	G	01	T	9	DBH	2.5	92.4	HT			37	0.98
366 TSHE	T BSW	W	M	01	T	2	DBH	15.3	134.7				21	0.97
11 TSHE	T BSW	W	0	01	T	2	DBH	15.3	78.0				18	0.99
258 TSHE	T BSW	W	0	02	T	2	DBH	8.9	134.7				207	0.94
333 TSHE	T BSW	W	0	03	T	2	DBH	8.9	113.3				80	0.87
348 TSHE	T BSW	W	0	04	T	2	DBH	14.4	114.8				91	0.92
357 TSHE	T BSW	W	0	05	T	2	DBH	24.7	56.0				15	0.90
915 TSME	T BAT	G	G	01	T	9	DBH	8.9	44.0	HT	400.	2530.	. 39	0.99
16 TSME	T BBD	W	0	01	T	2	DBH	17.0	54.6				6	0.98
913 TSME	T BBL	G	G	01	T	9	DBH	8.9	44.0	HT	400.	2530.	. 39	0.70
15 TSME	T B8L	W	0	01	T	2	DBH	17.0	76.2				11	0.99
912 TSME	T BBS	G	G	01	T	9	DBH	8.9	44.0	HT	400.	2530.	. 39	0.69
914 TSME	T BFT	G	G	01	T	9	DBH	8.9	44.0	HT	400.	2530.	. 39	0.63
14 TSME	T BFT	W	0	01	T	2	DBH	17.0	76.2				11	0.97
911 TSME	T BSB	G	G	01	T	9	9 DBH	8.9	44.0	HT	400.	2530.	. 39	0.95
340 TSME	T BSB	G	M	01	T	2	DBH	11.5	125.7				399	0.91
18 TSME	T BSB	W	0	01	T	2	2 DBH	17.0	76.2				14	0.97
337 TSME	T BSB	W	0	02	T	2	DBH	22.3	88.8				15	0.95
341 TSME	T BST	G	M	01	T	2	2 DBH	11.5	125.7				399	0.95
338 TSME	T BST	W	0	01	T	2	DBH	22.3	88.8				15	0.98
916 TSME	T BSW	G	G	01	T	9	DBH	8.9	44.0	HT	400.	2530.	. 39	0.99
339 TSME	T BSW	G	M	01	T	2	2 DBH	11.5	125.7				399	0.95
17 TSME	T BSW	W	0	01	T	2	DBH	17.0	76.2				14	0.98
336 TSME	T BSW	W	0	02	T	2	DBH	22.3	88.8				15	0.97
671 UMCA	T VAE	C	G	01	T	17	DBH	10.	80.	HT	60.	330.	. 60	0.96
672 UMCA	T VSW	C	G	01	T	17	7 DBH	10.	80.	HT	60.	330 .	. 60	0.95

Equation Selection Penalties (ESP)

Section

In many instances, the plants used to construct the equations in the Li brary will closel y match the plants in the Input Data File. There al so will be instances, however, when the plant sizes, geographic areas, seral stages, or ot her factors will not match. With each misnatch, there is an associ ated Equation Sel ection Penalty.

The severity of the misnatch will depend on the particular situation. For example, if your Input Data File is from coastal Wishington, but an equation is used from southeast Al aska, a slight geographic misnatch will occur. If the equati on were from the Rocky Mbuntains, however, the misnatch nould be nore severe.

Thi s section describes how BI OPAK chooses the "best" equation(s) for cal cul ating the val ue of a component. These procedures are al ways used unl ess (1) all el enents of a Request to Library were repl aced by the Substitution Key of a reassi gnment statenent (that is, all el enents of the Origi nal Equation Request were replaced), or (2) a Local Equation Number is specified in a Request to Li brary. In the forner instance, Bl OPAK uses the first library equation it encounters that exactly matches the Request to Li brary (see Appendix: Sel ecting Equations and Summations: table 5). An error results if such an equation is not found.

Equation Selection Penalty (ESP) calcula

It is assumed for purposes of the following di scussi on that no reassi gnments were made, so that the Requests to Li brary are the same as Original Equation Requests. When a Request to Li brary is made, BI OPAK will try to choose the "best" equation by sel ecting the equation with the lowest ESP within the constraints di scussed in Appendix: Equation Sel ection Penalties: Maximum Threshol d and Summation ESP Level s.

The ESP is greater than zero when one or nore characteristics of the Candi date Equation in the Equation List do not exactly match the Request to Library (see Appendi x: Sel ecting Equations and Summations: table 5). Six sources that can contribute to the ESP of a Candi date Equation are described in the next six sections: Geographic area, Serall stage, Extrapolation, Coppice Iifeform substitution, Substitution of BAT for BFT, and Equation list search failure. The ESP for a Candi date Equation is the sum of the ESP val ues fromthese six sources. The val ues assi gned to each of the sources contributing to the total ESP can be nodified by you as described in Appendix: Customizing BI OPAK.

Geographic Area--

The ESP increases as the difference in climate bet ween the geographic area in the Request to Li brary and the geographic area for the Candi date Equation i ncreases. Thi s method assumes a di rect rel ations bet ween geographic area, climate, and plant grouth form

Seral Stage--

Greater differences in seral stage bet ween the Request to Li brary and the equation have greater ESPs. Seral stages are based primarily on the form of trees in the sampled commity.

Extrapolation--

The range(s) of the independent or prediction variable(s) (for example, DBH) of the plants measured to build an equation can be found in the Li brary for nost equations. An overextrapol ation occurs when one or more of the paraneters in the Request is greater than the largest val ue of the plants used to build the equation. An under extrapol ation occurs when one or nore of the parameters in the request is less than the snallest val ue of the plants used to build the equation. Overextrapol ation has a greater ESP because it can potentially lead to greater errors than underextrapol ation. If the range of the dependent variable is not stored in the Li brary, a different ESP penalty is assi gned (PARAMETER RANGE UNNOWN). When any of these three conditions occurs, a warning message appears in the individual plant report.

Coppice lifeform substitution--

A plant has a coppicelifeformif it is a stump sprout; such plants can be only trees or shrubs. The coppice lifeformis recogni zed because st ump sprouts often have a different grouth formthan plants grown fromseed. When coppice Iifef ormis in the Request, BI OPAK al so consi ders Candi date Equations with the taxonomic lifeformfor that species in the Equation Library.

Substituting BAT for EFT--

For Iifef orns other than trees, shrubs, and coppice, total bi onass of foliage (BFT) nay be identical to, or a reasonable estimate of, total aboveground bi omass (BAT). BI OPAK will consider this alternative: For herbs, grasses, and sedges, an ESP of 5,000 is i mposed when a BAT equation is used to cal cul ate BFT. For bryophytes and lichens, no penalty is added under these ci rcunst ances.

Equation list search failure--

The No Val ue Cal cul ated ESP occurs when no val ue can be cal cul ated because no equation exists for that species in the Equation List File, or because a paraneter needed for the equation is not incl uded in the input record. For the
files shi pped with BI OPAK, this ESP val ue has been set at $\mathbf{8 0}, \mathbf{0 0 0}$.
ESP calculation for summations-
In general, the ESP assi gned to sumnations of several equations is set equal to the greatest ESP anong the indi vi dual equations. Note, however, that the ESPs of certain components are reduced by prescribed wei ghting factors because they are less critical to the accuracy of the sum (wei ghted ESP = ESP* wei ght). These components and their wei ghting factors are given in figures 2-4. The ESP wei ghting occurs whet her the summation is specified by equation reassignment or is chosen by Bl OPAK.

Fi gure 2-- Default sumnations for tree, shrub, and coppice lifeforns.

Total projected area of foliage
PET
^ ^

I

New foliage area PF

Od foliage area
PF

Total surface area of foliage
AFT
$\wedge \wedge$

|

New foliage area AFN

Od foliage area A $F 0$

Figure 3- Default summations for herb, grass, and sedge lifeforms.

Total projected area of foliage PFT
^

New foliage area
Od foliage area PFN PFO

Fi gure 4-- Def ault sumations for bryophyte (noss) and Iichen Iifeforns.

Maximum, Threshold and Summation ESP Levels

These level s control the naxi mum accept able ESP level (Maxi mum ESP), the ESP l evel bel ow whi ch the search for a lower ESP is di scontinued (Threshol d ESP), and the ESP Ievel at whi ch summation will be attempted (Sumnation ESP). You set these levels when Designing a Run. These val ues influence execution time and affect equation sel ection. The naxi mum allowable val ues for the three ESPs, can be modified by the user as described in Appendi x: Customizing BI OPAK.

Maximum ESP Level--

It determines the poorest accept able equation match allowed by the user. Mbre specifically, it determines the poorest acceptable natch between the Request to Li brary and the equation used to cal cul ate a component val ue. BI OPAK does not allow this level to be set hi gher than the No Val ue Cal cul ated ESP (80,000 as supplied with BI OPAK). A component val ue will not be cal culated if the best ESP of the Candi date Equations (or summations) exceeds the Maxi mum ESP Level.

The Maxi mum ESP Level can range in val ue from 1 to 79, 999. For example, if you assign a Maxi mum ESP Level of 70,000, then any equation with an ESP val ue greater than 70, 000 will not be consi dered for cal cul ation. If the chosen Maxi mum ESP Level is Iow, BI OPAK will be more sel ective in choosi ng Candidate Equations than if a hi gher ESP is gi ven. If the Maxi mum ESP Level is not specified, the program will not be able to sel ect any equations.

Threshold ESP Level--

This level determines when the ESP of a Candi date Equation is Iow enough that the search for an equation with a lower ESP can be di sconti nued. The Threshol d ESP Level can range in val ue from 0 to 79, 999. BI OPAK will end its equation search when it finds the first equation that is lower than, or neets, the Threshol d ESP val ue.

A high Threshol d ESP Level results in faster execution but can cause sel ection of I ess appropriate equations. A Iow Threshold ESP Level I engthens execution tine, but nay allow nore appropriate equations to be sel ected.

The following di agram shows how Bl OPAK sel ects equations based on user-assi gned Maxi mum ESP and Threshol d ESP Level s. For example, if a val ue of 70,000 were assi gned to the Maxi mum ESP Level and a val ue of 5,000 to the Threshol d ESP Level, BI OPAK nould continue to search for equations until it found the first equation with an ESP less than 5,000. No equation with an ESP greater than 70, 000 woul d be consi dered. In this exampl e, BI OPAK began by finding. five Candi date Equations (El-E5 in successi on) with an ESP val ue less than 70,000. Equations El-E5 al so had hi gher ESP val ues than the assi gned Threshol d ESP, so BI OPAK continued its search. When BI OPAK found the next Candi date Equation (E6) with an ESP val ue bel ow 5,000, it stopped searching.

Had BI OPAK been allowed to continue searching, an equation with an even better ESP val ue (equation E7) might have been found. This is the possi ble consequence of sel ecting a Threshol d ESP Level greater than zero (that is, the best equation nay not be sel ected). On the other hand, if equations E6 and E7 did not exist, thereby naking it impossible for Bl OPAK to find an equation with an ESP val ue less than 5,000, equation E3, the Candidate Equation with the best
(I owest) ESP val ue, woul d have been sel ected.

An assi gned Threshol d ESP Level of zero will allow for sel ection of the best equations, and it is strongly recommended that a val ue of zero be assi gned whenever possible. Those users with large Input Data Files or slower computers, however, may want to rai se the Threshol d ESP Level above zero to speed cal cul ati ons.

Summation ESP Level--

The Summation ESP Level does not apply to summations specified by an equation reassi gnment statement. The steps Bi OPAK uses to sel ect summations are described in Appendi x : Sel ecting Equations and Surmations: Bi opak Sel ects. The summation or single equation with the lowest ESP is used to estimate the plant component.

The Sumnati on ESP val ue can be best expl ai ned by referring to the following di agram Suppose BI OPAK is performing the routine task of searching for the nost appropriate equation for a gi ven plant component based on Maxi mum Threshold, and Summation ESP Levels. If it finds no single equation in the Equation Li brary (in this case, equations El-E3) with a lower ESP val ue than the Summation ESP Level, then BI OPAK will begin to consider Default Summations to sum for the desi red pl ant component. (See figures 2-4)

When the first sumnation of equations is found that has an ESP val ue less than the Threshol d ESP Level (in this example, sumation S3), then Bl OPAK will i mediatel y end its search and accept this summation as the best nethod of cal culating a particular plant component. If no equation summation is found that has an ESP val ue less than the Threshold ESP Level (that is, S3 does not exist), then the summation with the lowest ESP is sel ected (in this example, summation S4).

Summation ESP val ues are cal cul ated by mal tipl ying the ESP of indi vi dual equations used in a summation by their wei ghted val ue (see figures 2-4). The hi ghest resulting ESP val ue will be used as the ESP for the entire summation. For example, summation for the component BAT for trees, shrubs, and coppi ce Iifeforns (see fig. 2) might be cal culated by summing the equation results for BFT, BBD, BBL, and BST. So, cal cul ation of the ESP val ue of the summation noul d look Iike this:

PI ant component	Wei ght	ESP	(Wei ght) X (ESP)
BFT	0.10	4000	400
BBD	0.01	200	2
BBL	0.10	400	40
BST	1.00	500	500

Thus, the summation ESP nould be 500 .

Setting levels

In the Default Settinqs Window of Desi gn a Run, enter ESP level sased on the contributions of indi vi dual sources to the total Equation Sel ection Penal ty that you will accept. Getting Started: Suggestions for Using BI OPAK discusses setting these level s. As di scussed above, ESP for a Candidate Equation is the sum of the contributions to ESP from the indi vidual sources. A Maxi mum ESP Level of 212, for example, would allow rel ativel y minor mismat ches bet ween Seral Stage codes in conj unction with rel ativel y mi nor misnatches bet ween Geographic Area codes. It would not allow extrapol ation. A Maxi mum ESP Level of 21000, in contrast, woul d al I ow any mismatch bet ween Geographic Area codes, Seral Stage codes, or overextrapol ation and underextrapol ation. It nould not, however, all ow some conbi nations of misnat ches; for example, no misnat ch could occur in conbi nation with overextrapol ation.

Changing contributions to the Equation Selection Penalty

The contributions to ESP given in Appendix: Customizing BI OPAK: BI OCODES File were chosen so that normally less si gnificant mismat ches bet ueen the equation used and the request are assi gned a lower ESP than misnatches consi der ed to be generally more serious. They are specific to the Pacific Northwest regi on and nay not be appropriate for data obtai ned from ot her local es. These val ues can be changed as described in Appendix: Customizing BI OPAK: BI OCODES File.

Files

Section
141 User files
141 Input Data File
141 Run Design files
141 Run Desi gn File (*. RD)
142 Run Desi gn Report (*. RDR)
142 Equation Li brary files
142 Equation Database file (*. DBF)
142 Equation Database neno file (*. FPT)
142 Equation List file (*. EQN)
142 Equation documentation text file (*. TXT)
142 Program files
142 Internedi ate Bi nary File (*.I BF)
142 Bl OCODES File
142 Bl OSUMM File
143 Reports
143 Reports for Peopl e (*. RPT)
143 Machi ne Readable Reports
143 I ndi vi dual Pl ant Report (*. I ND)
143 Pl ot Summary Report (*. PLT)
143 Stand Summary Report (*.STA)
143 Di agnostic Reports
143 Sumnarized Equation Use Report (*. USE)
143 Detailed Equation Use Report (*. DET)
143 Error Report (*. ERR)

You need to keep track of many files. One is provi ded by you, some are used by BI OPAK and can be nodified by you, and others are produced during a run. This appendi x describes only files the user needs to keep track of. See al so I nstallation: Files shi pped with BI OPAK and Installation: Files in the BI OPAK directory for lists of files corresponding to these titles.

User files

Input Data File--

The file containing the data used for executing the component cal cul at ions.
This file must be in ASCl format. See Reference: Input Data File for a nore detailed description.

Run Design files

Run Design File (*.RD)--
This file is a product of Design a Run. The Run Design File is gi ven the extension.RD. The file contains default settings, the format of the input data records, the plant components to be cal culated, and any equation reassi gnnents.

Run Design Report (*.RDR)--
This report is a flat ASCII file that documents the Run Design File contents. It can be produced by sel ecting "run Design report" fromthe File Menu of Desi gn a Run. The report will be gi ven an . RDR extension.

Equation Library files

The Equation Library consists of the database file and its associated meno file. The dat abase file supplied with BI OPAK (BI OLI B. DBF) may be retrieved and then, al ong with the meno file (BI OLI B. FPT), broused and edi ted. The tuo other files listed bel ow can be produced fromthe Library. A new Library al so may be created by the user.

Equation Database fife (*.DBF)--
This is the Equation Li brary. This file (*. DBF) can be created, broused, searched, sorted, and nodi fied.

Equation Database memo file (*.FPT)--

This contains the text in the Sources of Data Window for each equation. Each record is linked di rectly with the coresponding record in the Equation Database file and can be nodified whenever that file is nodified.

Equation List file (${ }^{*} / E Q N$)--
This is created by the Li brary Editor and used in cal culations. This file can be created by saving the Equation Li brary as an Equation list file--under the File Menu of the Equation Li brary Editor (the Li brary must first be saved as a Database file).

Equation documentation text fife (*.TXT)--
A text file containing all the documentation (fromthe editing windows) for the equations in the Li brary. It can be very long.

Program files

There are several files read by the programthat you can al so nodify or produce.

Intermediate Binary File (*.IBF)--

A bi nary file used for generating reports. It is produced when Cal culate Plant Components is executed, during which time the file can be named.

BIOCODES File--

BI OCODES is a flat ASCli file containing all the valid codes for components, geographic area, and seral stage, the component units, as well as the Equation Sel ection Penalty val ues. The file can be nodified by you. See Appendi x:
Customizing BI OPAK: BI OCODES File for more details about this file.

BIOSUMM File--

BI OSUMMis a flat ASOI file containing the default summation trees to be used by BI OPAK This file can be modified. See Appendi x: Customizing BI OPAK: BIOSUMM File for nore details about this file.

Reports

Reports can be produced during a run, if requested. The reports are descri bed in more detail in Reference: Reports and Other Output.

Reports for People (*.RPT)--
Thi s report, which nay incl ude an Indi vi dual Pl ant Report, Pl ot Summary Report, and Stand Summary Report, can be requested when Generate Reports is sel ected from the Main Menu.

Machine Readable Reports--

individual Plant Report (*.IND)--

This report lists all input paraneters (predictor variables) and cal culated components for each indi vidual pl ant (i nput record).

Plot Summarv Report (*PLT)--

Thi s report gi ves all input paraneters and the per-hectare val ues (or per acre) for components by species and by vegetation strata for each pl ot within each stand.

Stand Summarv Report (*.STA)--

This report gi ves averages and standard errors of all input paraneters and the val ues per-hectare (or per acre) for each component by spec ies and vegetat ion strata over all plots within each stand.

Diagnostic Reports--

Summarized Eaua tion Use RePort (*.USE)--

This report presents a summary of the equations used for cal culions. It lists all conbinations of Original Equation Request, Request(s) to Library, Equation(s) Actually Used and the number of times each conbi nation was used during cal cul ations.

Detailed Eauation Use Report (*.DET)--

This report lists individually, for every component of every plant (input record) within the specified strata, the Original Equation Request, the Request(s) to Li brary, the Equation(s) Actually Used, and the Equation Sel ection Penalty for the equation (or summation) used.

Error Report (*.ERR)--

This report lists codes for the two nost serious errors and warni ngs detected by BI OPAK during sel ection of equation or group of sumed equations and computation of a component val ue.

Lifeform

Section

Lifef orm substitutions

BI OPAK Lifeform substitution procedures

Nb Reassi gnment: Taxonomic Lifeformfrom Li brary
Reassi gnment without Criteria Lifeform Primary Lifeform Default,
Taxonomic Lifeform or from Substituted Speci es

Reassignment with Specified Lifeform Taxonomic Lifeform Criterion
Lif ef orm

Bl OPAK must associ ate a Lifeform code with each input record. Without a Lifeform code, cal cul ations cannot be executed. Lifeform codes affect the nat ching of Equation Reassi gnnents to input records, equation sel ection, the pl ant components cal cul ated, and the commity stratum within which out put is listed in reports. See Appendix: Codes for valid Lifeform codes.

substitutions

Ideally, Lifef orm cones in from the Input Data File. If the Iifeformis not incl uded in the Input Data File, or is missing from a given record, Bl OPAK will try to substitute a lifeform The desired lifeformwill be used in the Ori gi nal Equation Request if these guidel ines are followed:

1. If possi ble, incl ude Lif ef orm codes for each record in your Input Data File. Alist of valid Lifeform codes can be found in Appendix: Codes.
2. If lifeformis a variable in your dataset, but is missing in some cases, do this for each speci es with missing lifeform data:
a. I ncl ude the speci es code (but no Iifeform code) in the Criteria and Substitution sections of the Reassignments Add/ Modify Vindow and
b. Add the desired Iifef orm as the Primary Lifef orm Def aul t.

For each record with missing Iifeform dat a, BI OPAK will substitute the Prinary Lif ef orm Def aul t.
3. If lifeformis not incl uded in your dat aset for each species:
a. I ncl ude the Speci es code in the Criteria and Substitution sections of the Reassi gnments Add/ Modify VIV ndow and
b. Add the desired Iifef ormin the Substitution section.

For each species, BI OPAK will consi der only equations with the requested lifef orm

BIOPAK Life form substitution procedures

In nost cases, users will not need to be concerned with these procedures. They are incl uded here to make the documentation comple.

These procedures are followed only if Lifeformis not included in the Data

Input Fornat or if Lifeformfor the plant in the Input Data File is missing. They are followed sequentially until a suitable Lifeform code is found.

No Reassignment: Taxonomic Life form from Library--

If there is no Equation Reassi gnment for the conbi ned Speci es-Geographic AreaSeral Stage key of the input record, one of tho thi ngs occurs: (1) BI OPAK wi 11 substitute the Taxonomic Lifeform code assigned to this species in the Equatai on Li brary (. EQN file); or (2) if the species is not in the library, the input record cannot be processed, and an error code is reported.

Reassignment without Criteria Life form: Primary Life form Default, Taxonomic Life form, or from Substituted Species--
If there is a set of (one or nore) Equation Reassignment criteria that matches the Original Equation Request, BI OPAK will look for one of these reassi gnment criteria with a blank lifeform If found, and if a primary lifeform default is incl uded in this reassignment, this primary lifeform default is used for the Iifeform in the Original Equation Request. If the primary lifeform default is bl ank, BI OPAK will try to substitute the Taxonomic ifef orm code assi gned to this species in the equation library. If the species is not incl uded in the library, then the Lifeform code specified in the Substitution Key of the reassi gnnent will be used. If this code is blank, then the Taxonomic Lifeform code present in the library for the speci es of the Substitution Key is used. If the Iatter species is not in the library, the input record cannot be processed, and an error code is reported.

Reassignment with Specified Life form: Taxonomic Life form, Criterion Lifeform--

If all of the Equation Reassi gnment criteria in the set of those matching the Speci es-Geographic Area-Seral Stage key of the input record have Lifeform codes, then al reassi gnments of the set are lifeform dependent. In this case, BI OPAK will try to substitute the Taxonomic Lifeform code assigned to the input speci es in the equation library. If the input species is not included in the Iibrary, and if there is only one matching Reassignment in the set, the Iifef orm of the criteri on for that matching Reassi gnment is substituted. If the set incl udes nore than one natching Reassi gnment, no presumption regarding lifeform can be made, the input record is not processed, and an error is reported.

Note: If the lifeformis specified in the input record, but an equation reassi gnnent matching the input record is present in the Run Design File and the reassi gnnent includes a primary lifeform default, the latter controls the Comminity Strat um assi gnnent of the report output. It does not, however, substitute for the Lifeform code. This obscure condition allows you to force report val ues to be assi gned to a stratum that does not match the Lifeform code used in equation sel ection.

Selecting Equations and Summations

Section
Bl OPAK sel ects Equations and Summations 148
Choosing the equation used 149
User sel ects Equations and Summations 150
Reassi gni ng Equations 150
Sel ecting Speci es 154
Situations when Reassi gnnents are recommended 154

BI OPAK uses built-in rules when sel ecting an equation fromthe Equation List File as descri bed in Appendix: Sel ecting Equations and Summations: BI OPAK Sel ects. This is the default method for BI OPAK to use. Alternatively, you nay control sel ection of the equation with an Equation Reassi gnnent as described in Appendi x: Sel ecting Equations and Summations: User Sel ects.

One must understand the basi c steps Bl OPAK uses to process input data to understand how equations are sel ected. It may be hel pf ul to refer to figure 1 . BI OPAK processes the Input Data File one pl ant at a tine. In the Components to Output VIIndow of Desi gn a Run, you specify the components to be cal cul ated, and the commity strata for each component. If the Lifeform of a given plant in your Input Data File falls within the commity strata you specified (see Appendi x: Codes for a list of Lifef orm codes and strata designation), that pl ant component will be cal cul ated for that plant. The cal cul ations are processed as follows (see fig. 5):

1. An Ori gi nal Equation Request is constructed by using data fromthe Input Data File and the Run Design File.
2. The Original Equation Request is compared with the Reassi gnment Criteria you listed (in the equation Reassignments Add/Modify Whdow of Design a Run). If the Criteria natch the Original Equation Request, the infornation listed in the Substitution Key is substituted. A Request to Library is produced, which incl udes the substituted infornation. In this instance, the Request to Li brary differs from the Original Equation Request.
3. The Equation List File is searched and the "best" equation (if any can be found) is used to compute the user-specified plant component.

The Original Equation Request is constructed with the el enents shown in table 3. Speci es code and the val ues(s) of the paraneter(s) mist cone fromthe Input Data File. Usually, Bl OPAK supplies the Lifeform code for the particular species fromthe Equation List File (from the "TL" col um- Taxonomic Lifeform) or an Equation Reassi gnment, as descri bed in Appendix: Lifef orm and you need not be concerned about this. Alternativel y, the Lifeform code may cone from the Input Data File. The Geographic Area code and Seral Stage code may be read fromthe data, or the Default Settings in the Run Design File nay be used. The Plant Component code cones from the Run Design File (Components to Output). This process is shown di agramatically in figure 5.

Table 3-El enents in the Origi nal Equation Request, that is, before Equation Reassi gnnent, if any

Fi gure 5-- Fl ow of inf ormation in the Equation Reassi gnnent process and sel ection of an equation from the Equation List File. Elements in the Origi nal Equation Request are shown under their common sources.

BIOPAK selects Equations and Summations

To satisfy a Request to Library, Bl OPAK may:
Sel ect a si ngle equation fromthe Equation List File,
2 Sel ect a group of equations and sum the cal cul at cod components from each equation in the group to produce the needed pl ant component estimate,
3. Or determine that no suitable equation can be found and gi ve an error code in reports.

BI OPAK will scan the Equation List File looking for Candi date Equations. To be consi dered for sel ection by BI OPAK, a Candi date Equation must be of the same species and lifeform and the equations must use the sane paraneters, which are found in the Input Data File record. BI OPAK will consider using equations with different Geographic Area codes and Seral Stage codes than those in the Request to Li brary. For each input record, the Request to Li brary will be compared to the Candi date Equations, and the best equation will be sel ected.

Often, there will not be an equation available for a requested plant component, yet equations may exist for several other components whose results can be
summed to gi ve an acceptable estimate. The summations that Bl OPAK may sel ect on its own are called Default Summations and are displayed as Summation Trees in figures 2 through 4. These are different for different lifeforns. The val ue of each 'parent' component can be cal culated by suming val ues of the components i medi ately bel ow Any component needed for this summation, but for which an equation is not available, can in turn be cal culated by suming the components bel ow it. In this way, BI OPAK nay consi der summing tuo, three, or nore components. For example, for a tree, BAT (total aboveground bi onass) could be cal cul ated as BFT \mathbf{t} BAE, BFT t BBD t BAP, BFT t BBD t BBL t BST, or BFN t BFO t BBD t BBL t BSWt BSB.

Choosing the equation used--
As described above, several single equations and several summations nay be Candi date Equation(s) to cal cul ate the pl ant component. BI OPAK uses the Candi date Equation(s) with the lowest (best) Equation Sel ection Penalty (ESP). An ESP is cal cul at ed for each Candi date Equation. The ESP is lower when the Candi date Equation matches the Request to Li brary closel y and is higher when the match is poor. Msnatches in Geographic Area code and Seral Stage code, overextrapol ation and under extrapol ation and other factors are considered in cal culating the ESP, as described in Appendi x : Equation Sel ection Penalties. In fisures 2 throush 4, the numbers in parentheses next to the components are used to wei ght the ESPs associ ated wi thi indi vidual components of at summation. The ESP for the overall sumation is the largest, wei ghted ESP among the components that are summed, as descri bed in Appendi x : Equation Sel ection Penalties.

Three ESP I evel s Iimit the Candidate Equation(s) BI OPAK will consider. These are described fully in Appendix: Equation Sel ection Penalties: Maxi mum, Threshol d, and Summation ESP Level s and bri efly here. BI OPAK will not consider a Candi date Equati on with an ESP greater than the Maxi mum ESP Level. Bl OPAK will stop searching for other Candi date Equations when it has found one with an ESP less than the Threshold ESP Level. BI OPAK will not search for Candi date Equations that are Default Summations if it finds a single Candidate Equation with an ESP less than the Sumnati on ESP Level. The Maxi mum ESP Level al Ious you to limit the extent of misnatches. The Threshold ESP Level and Summation ESP Level allow you to manage the tradeof f between less execution time and better Candi date Equations.

BI OPAK sel ects equations for each requested component independently. Theref ore, val ues for different components of the same plant or of the Candi date Equations in a sumnation, for example, may be cal cul ated by using equations with different Geographic Area codes or Seral Stage codes.

EXAMPLE: This example illustrates the equation sel ection process when Bl OPAK sel ects the equations to be used in cal culations. The illustration considers one Iine of data from the Input Data File. In this example, the user selected total aboveground bi onass (BAT) as a component to be cal culated. In the Data I nput Fornat Window of Desi gn a Run, the user defined tuo variables in the data file: tree dianeter at breast hei ght (DBH) and hei ght of the tree (HT). From the Input Data File, BI OPAK read the Speci es code and the val ues for the variables DBH and. HT. The I nput Data File did not incl ude codes for Lifeform Geographi c Area, or Seral Stage; the user sel ected the defaul t Geographic Area and Seral Stage codes in the Default Settings Window and BI OPAK incl uded the Taxonomic Lifeform code found in the Equation Library for the equation it sel ected.

ne of Inp	Data File:	Infornation from Run	Desi qn Fi
NFGYBLF 19	ABAM 1166320	Default Settings:	W 0
Used:	ABAM 1166320	Data Input Fornat:	DBH, HT
		Components to Output:	BAT

Oriqi nal Equation Request: ABAM _ BAT WO _ DBH 116. 0 HT 6320
Request to Li brary: \quad ABAM _ BAT W 0 _ DBH 116. 0 HT 6320
Equations Used: ABAM T BFT G M 1
ABAM T BSB WG 1
ABAM T BSW WO 2
ABAM T BBL G 01

In this example, BI OPAK did not find an equation for the BAT of Pacific silver fir (ABAM in old-grouth forests (0), on the west side of the Cascades (W. Instead, it summed four components for ABAM total foliar bi onass (BFT), bi onass of stem bark (BSB), bi onass of stem nood (BSW, and bi onass of li ve branches (BBL). The components, whi ch were summed to esti nate BAT, were not complete; for example, there was no equation in .the Library for dead branch bi omass (BBD) of ABAM There nay have been an equation for BBD of a rel ated species, but BI OPAK will not substitute a different species. The numbers following the Geographic Area and Seral Stage codes are the Iocal equation numbers for the equations sel ected.

Notice that Bl OPAK sel ected some equations with different Geographic Areas and Seral Stages; for example, an equation for the BFT of a general Geographic Area (G) and a mat ure stand (M was sel ected rather than the specified def aults (W and 0). This sort of substitution is usually acceptable. Bl OPAK substitutions can be controlled by the user in two ways, however: (1) by setting the ESP I evel s so substitution would not occur (see Appendix: Maxi mum, Threshold and Summation ESP Levels), or (2) by specifying the Substitution(s) in an Equation Reassi gnnent.

BI OPAK will make substitutions for plant components (through sumnation), Geographic Area and Seral Stage to carry out cal culations. It will never sel ect equations for a different species or lifeform (unl ess specified by the user in Equation Reassi gnnents).

User selects Equations and Summations

Reassigning Equations--

One of the nost usef ul feat ures of BI OPAK is that it allows you to control sel ection of the equation used for cal culating a plant component. This is done with an Equation Reassi gnnent. In this section, we describe how BI OPAK processes data when the Origi nal Equation Request is changed by an Equation Reassi gnment. The wi nclows used for naki ng Equation Reassi gnnents are descri bed in Reference: Desi gn a Run.

Now we describe the steps BI OPAK uses to process data fromthe Input Data File uhen you have created one or nore Equation Reassi gnnent(s). Later we use
examples to illustrate the process. This explanation picks up after the Original Equation Request has been produced. Figure 5 illustrates the flow of infornation in the Equation Reassi gnment process.

There are tuo parts to every Equation Reassi gnnent: the Reassi gnment Criteria and the Substitution Keys(s) (table 4). The user requests a sumation by incl uding al lhe components to be summed in the Substitution section (bottom hal f of the Reassi gnnent Add/ Modify ${ }^{(1 / n d o w}$) of Reassi gnnents. In other words, specify a Substitution Key for each component to be included in the summation.

Table 4--Information that nay be in an Equation Reassi gnment ${ }^{\text {a }}$

El ements in Reassi gnnent Criteria	El ements in Substitution Key (nay be repeated 9 times)
Speci es code (not optional)	Speci es code (not optional)
Li f ef orm code	Lif ef orm code
Component code	Component code
Geographi c Area code	Geographi c Area code
Seral Stage code	Seral Stage code Local Equation nunber
Paraneter 1 code ${ }^{\text {b }}$	
Parameter 1 lower bound ${ }^{\text {b }}$	
Parameter 1 upper bound ${ }^{\text {b }}$	
Parameter 2 code ${ }^{\text {b }}$	
Parameter 2 l ower bound ${ }^{\text {b }}$	
Parameter 2 upper bound ${ }^{\text {b }}$	
Parameter 3 code ${ }^{\text {b }}$	
Parameter 3 lower bound ${ }^{\text {b }}$	
Parameter 3 upper bound ${ }^{\text {b }}$	

For each Original Equation Request, a bi nary search is made of the Equation Reassi gnments for a match between the Original Equation Request and Reassi gnment Criteria. The first match found, if any, is used. A match occurs when each el enent in the Original Equation Request (see table 3) matches the corresponding el ement in the Reassi gnment Criteria. Most el ements natch if their val ues are the same or the Reassi gnment Criteria el enent is blank. Paraneters, a speci al case, natch if the Parameter codes are the same and the parameter val ues from the Original Equation Request are within the ranges in the Reassi gnment Criteria List. If the Original Equation Request and the Reassi gnnent Criteria do not natch, then the Equation Reassignment is not used, and processing occurs as described in BI OPAK Sel ects Equations and Summations.

When the Reassi gnment Criteria match the Original Equation Request, the Request to Li brary is made fromthe Original Equation Request and the Substitution Key(s). If an el ement in a Substitution Key is blank, the corresponding val ue from the Original Equation Request is used. If an el enent in a Substitution

Key is incl uded, it is used. If there is nore than one Substitution Key per Criteria, this process is done for each. Thus the Request to Library may be for a single equation or for a sumation of several equations that will serve as an estimate of the requested plant component.

If the Request to Li brary is for a si ngle equation, BI OPAK nay consi der Candi date Equations that are Default Summations. If you have specified a summation with nore than one Substitution Key (nore than one Iine of infornation in the Substitutions section of the Reassignments Add/Mbdify Vindow, then no Default Sumation will be consi dered.

At this point, the Request to Li brary is processed as described in BI OPAK Sel ects Equations and Summations, with the following exception. El enents in the Request to Library that are set by the Substitution Key must exactly match those of a Candi date Equati on for it to be considered. An Equation Sel ection Penal ty (ESP) is determined for each Candi date Equation as described in Appendi x : Equati on Sel ection Penalties. The equation used for component cal culations is the one with the lowest (best) ESP.

Occasi onally, nore than one equation in the Equation List can exactly match a Request to Li brary (table 5). Such equations are distinguished in the library by having different Local Equati on Numbers. I ncl uding the Local Equation Number, al ong with a compl ete Substitution Key in an Equation Reassi gnnent, assures the use of that specific equation- no other equation will be consi dered. A compl ete Substitution Key nould have val ues assi gned to every variable of the list.

If you do not take care in specifying the equation to be used, and nore than one equation in the Equation List natches the Request to Library, then the equation with the Iowest ESP will be sel ected. If the total ESPs are equal, then BI OPAK will sel ect the first one it encounters with the lowest ESP.

Table 5--Inf ornation in the Request to Li brary ${ }^{\text {a }}$
El enents in
Request to Li brary
Speci es code
Li f ef orm code
Component code
Geographi c Area code
Seral Stage code
Local Equation number
Paraneter 1 code ${ }^{\text {b }}$
Paraneter 1 val ueb
Parameter 2 code ${ }^{b}$
Parameter 2 val ue ${ }^{\text {b }}$
Parameter 3 code ${ }^{\text {b }}$
Paraneter 3 val ue ${ }^{\text {b }}$
${ }^{\text {a }}$ The first 6 variables (that is, the Substitution Key) will be repeated in a request for a summation. The local equation number can be used to di stinguish Equations that have the same val ues for all 5 codes in the Substitution Key. One to 3 paraneters may be present.

EXAMPLE 1: This example illustrates the equation sel ection process when the user sel ects the equations to be used in cal culations. The illustration consi ders one line of data from the Input Data File. In this example, the user sel ected total aboveground bi omass (BAT) as a component to be cal culated. In the Data Input Fornat Window of Desi gn a Run, the user defined two variables in the data file: tree di ameter at breast hei ght (DBH) and hei ght of the tree (H) . From the Input Data File, BI OPAK read the Species code and the val ues for the variables DBH and HT. The Input Data File did not include codes for Lifeform Geographic Area, or Seral Stage; the user sel ected the default Geographic Area and Seral Stage codes in Default Settings; and the Lifeform codes were specified by the user in Equation Reassi gnnents.

For the purposes of this example, we will assume that there is not an equation for the BAT of Pacific silver fir (ABAM Abies amabilis) in old-grouth forests (0), in the west side of the Cascades (W. Instead, the user chose to sumfive components: total foliar bi onass (BFT), bi onass of stem bark (BSB), bi onass of stem nood (BSW, bi onass of live branches (BBL), and the bi onass of dead branches (BBD). Because there was not an equation in the Li brary for the BBD of ABAM the user specified that an equation for the BBD of western hem ock (TSFE) be substituted. Notice that BI OPAK sel ected sone equations with different geographic areas and seral stages; for example, an equation for the BFT of a general Geographic Area (G) and a mature stand (M) was sel ected rather than the specified defaults (\mathbf{W} and 0). The numbers following the Geographic Area and Seral Stage codes are the local equation numbers of the equations sel ected.

EXAMPLE 2: This example illustrates the equation sel ection process when the
user selects a specific equation to be used in cal culations. The following illustration considers one line of data from the Input Data File. In this example, the user sel ected total aboveground bi onass (BAT) as a component to be cal cul ated. In the Data Input Fornat Window of Design a Run, the user defi ned two variables in the data file: tree diameter at breast hei ght (DBH) and hei ght of the tree (HT). The Input Data File did not include codes for Lifeform Geographic Area, or Seral Stage; the user sel ected the def ault Geographic Area and Seral Stage codes in Default Settings.

Reassiqnnent Criteria: \quad ABAM_ BAT _ _ DBH 0.19.9
Substitution Key: \quad ABPR T BAT _ M 2
Request to Li brarv: ABPR T BAT WM 2 DBH 13. 2 HT 820
Equation Used: ABPR T BAT WM2
For this example, we will assune that there is not an equation for the BAT of Pacific silver fir (ABAM in old-grouth forests (0) in the west side of the Cascades (W). Instead, the user deci ded to substitute an equation for BAT of noble fir (ABPR, Abi es procera), but only for trees with a DBH less than 19.9. There is a specific equation in the librarv for the BAT of noble fir mat ure stands (M in the west side of the Cascades (W with local equation number 2. Ther ef ore, the user incl uded the rel evant Seral Stage code (M) and the Iocal equation number (2), in the Substitution Key. In this case, the user has deci ded that substituting an equation for a mature stand instead of an oldgrouth stand would be acceptable for their research purposes.

Selecting Species--

By setting the "Sel ect Only Reassi gned Species" flag when you Design a Run (in the Default Settings Window), you can specify that onl y those input records whose speci es occur in at least one equation Reassignment Criteria be processed. All other species in the data file are ignored.

This allows you to specify, for example, that data for only one or a few tree species be processed. To do this you nould create Reassi gnnent(s) with the same speci es code in the criteria and substitution sections. No Equation Reassi gnments would occur, but only the particular species, would be flagged for processing.

Situations when Reassignments are recommended

1. Lifef orm When the Lifef orm of the pl ant sampled is different fromthe Taxonomic Lifeform as recorded in the Equation Library; AND Lifef orm was not a variable in your Input Data File.

For example, when Lifeformis not specified in the dataset, if a plant sampled
had a coppice Lifeform and the Taxonomic Lifeform of the species is shrub, BI OPAK will use only shrub equations.

2 Speci es: When you want Bl OPAK to use equations for a species ot her than the speci es you sampl ed.

For example, if there are no equations in the Li brary for a particular species in your Input Data File, BI OPAK can be instructed to substitute equations for a similar species. To do this, add the new species to the Substitution Key in Reassi gnments.
3. Geographic Area, Seral Stage: By default, BI OPAK will use equations from different geographic areas and seral stages, within the specified ESP constraints. To avoid this, specify the desired Geographic Area and Seral Stage in the Substitution Key of Reassi gnnents. Onl y equations with the specified Geographic Area and Seral Stage will be used.

For example, assune there are many equations in the Library for a particular species in your Input Data File. After the first run, you notice that equations were used from a region and seral stage much different from those in your dataset The run can be repeated after specifying the geographic areas and seral stages which BI OPAK should use, by adding these to the Substitution Key in Reassi gnments.
4. Sel ects a specific equation: You may want Bl OPAK to sel ect a specific equation in the Library and may have identified an equation in the Library for BI OPAK to use for a particul ar cal cul ation. By incl uding the Substitution Key, and the Local Equation number, of the desired equation, BI OPAK will sel ect the specific equation.
5. Reassi gn species by size: You nay want the snaller plants of a particular speci es sampl ed to be reassi gned in one way, and the larger ones in another way. There are several reasons you may want to do this; for example, there may be no equations for a tree speci es you sampl ed. You nay deci de to reassign the smaller di aneter trees to a rel ated shrub speci es, and the I arger di ameter trees to a rel ated tree species. In another instance, there may be no equations for a specific herb species. You nay want to reassign the less dense occurrences to one seral stage, and the denser occurrences to another seral stage.
6. To specify a summation: As described earlier in User Selects Equations and Sumations, you can specify a sumation. You can either do the minimm and specify the components to be used, or be nore precise and specify the exact equati ons to be used.
7. Cover as input parameter: For component cal culations based on cover data, you shoul d, when possible, sel ect library equations based on a pl size equal to the pl ot size of the Input Data File to be used. See Reference: Li brary Editor: Parameters for nore infornation on Cover as a parameter in the Li brary.

Troubleshooting

Section
156 Error nessages
156 Instal lation errors
157 Errors when starting BI OPAK
157 Desi gn a Run warni ngs and error messages
158 Default Settings section
158 Data Input Fornat section
159 Components to Output section
159 Reassi gnnents section
160 Savi ng Run Design File section
161 Li brary Editor errors and warni ngs
161 Errors when cal culating plant components
162 Errors when generating reports
163 Errors when vi ewi ng reports
163 Errors in reports
168 Known bugs
168 Strange behavi or and red error boxes
168 Reboot your PC
168 Check contents of BI OENN File
169 Increase BI OPAK temporary file storage space
170 Increase free menory
170 I ncrease DOS envi ronment space

Despite the best of intentions and preparation, you nay have problens usi ng BI OPAK. The probl ens may cone in the form of warning or error messages, or you may have trouble just getting BI OPAK started. This section is intended to ease your troubles as much as possible.

Error messages

Because an error message can cone fromseveral sources (FoxPro, Fortran, Batch Files, and BI OPAK), the error nessages have been listed al phabetically by location in Bl OPAK.

Ins errors

Error: Bl OPAK instal lation files not on current drive.
Reason: One or more files expected on the BI OPAK di sk was not found.
Suggestion: I nsert a compl ete Bl OPAK installation disk and try agai n.
Error: Bad input drive. Only drives $A:$, B :, $C:$, D are allowed. Reason: The install program attenpted to determine the drive with the instal ation files but was unsuccessful because it was not one of these. Suggestion: Instal I BI OPAK fromthe root di rectory of one of these drives.
??? I nvalid dri ve I etter for the Bl OPAK di rectory. Try again.
Reason: Drives C: D: E: F: G are the onl y drives allowed by the installation
batch prograns for the location of the BI OPAK di rectory.
Suggestion: Type one of these letters. The col on is not needed.
??? Above file is not on this disk. Thi s is not a complete Bi opak Disk 1. Press Ctrl-Break to stop installation, or insert BI OPAK Disk and press any key to conti nue.
Reason: A critical Bl OPAK file is missing from this diskette.
Suggestion: Insert a good BI OPAK di skette and press any key to continue.
??? Unable to decompress this file. If due to insufficient hard disk space in $\mathrm{X} \backslash$ Bi opak, make nore space on this disk, or find a disk with nore space, then repeat installation. Be sure all files are erased from X : $\backslash B 1$ OPAK before repeating installation.
Reason: Probably due to insufficient hard disk space. Possibly due to corrupted BI OPAK files.
Suggestion: Del ete files to create nore space or find a drive with nore space, then rei nstal I BI OPAK (See I nstallation for the amount of space needed). If this does not work, then a Bl OPAK file may be corrupted so try installing from the backup copy you nade of the BI OPAK disk when it first arrived.
??? I nvalid dri ve letter for temporary files. Try agai n.
Reason: Drives C: D: E: F: G H I: J: K: L: M N O: P: Q R: are the only drives allowed by the installation batch prograns for the location of Bl OPAK temporary files.
Suggestion: Type one of these letters. The col on is not needed.

Errors when starting BIOPAK

??? Not enough free space (2 Mbytes) on $\%$ Bi ot $\mathrm{mp} \%$ to l oad Bi opak. Del ete sone files, rei nstall Bl OPAK, or change the Bi ot mp environment variable in this BI OPAK. BAT file to point to a drive with sufficient space.
More free space will be required to do some tasks, for example, to work with I arge equation libraries like the one shi pped with BI OPAK.
??? The BI OPAK di rectory \%i odi $\%$ does not exist. It must be changed to specify the path on which the Bl OPAK files reside before this batch file is run.
Suggestion: Rei nstal Bl OPAK or change the Bi odir envi ronnent variable in BI OPAK. BAT to specify the path on which the Bl OPAK files reside.
??? A critical file is missing from the Bl OPAK di rectory ($\mathrm{X}: \backslash$ bi opak).
Rei nstal I Bl OPAK.
Suggestion: Fol Iow the installation instructions to reinstal BI OPAK.
*** ERROR in SYSI NFO BI O Del ete SYSI NFOBIO in this di rectory and restart BI OPAK.

Design a Run warnings and error messages

In general, a warning will allow continuation of the program An error message indicates nore serious problens and will not allow saving of the Run Design File, or subsection, without further action by the user. If messages in red boxes are encountered see Appendi x: Troubleshooting, Strange and unusual behavi or and red error boxes.

Default Settings section--

Error: Bl ank ESP val ues are not al lowed.
Reason: Val ues for one or nore ESP Level s are blank in the Default Settings Vindow
Suggestion: Go back and fill in val ues for all three ESP Levels
Error: Invalid Seral Stage. Use FlOfor list.
Reason: Seral Stage code was entered that does not conformto the valid BI OPAK seral stage codes specified in the BI OCODES File.
Suggestion: Enter a valid code. Press $<$ F10> and sel ect fromlist. To add new seral stage codes to the list of valid codes, refer to Appendix: Customizing BI OPAK.

Error: Invalid Geographic Area. Use F10 for list.
Reason: Geographic Area code was entered that does not conformto the valid Geographic Area codes as specified in the Bl OCODES file.
Suggestion: Enter a valid code. Press $<$ F10> and sel ect fromlist. To add new Geographic Area codes to the list of valid codes, refer to Appendi x :
Cust oni zi ng BI OPAK.
Error: I nvalid units. Use F10 for list.
Reason: Units were entered that do not conform to the valid Bl OPAK units. Suggestion: Enter valid units. Press $\langle\mathrm{FlO}$ and sel ect fromlist, or refer to Appendi x : Units for a list of valid units.

Error: No Units entered for Pl ot Area. Exit cancel ed. Suggestion: Enter units. Press $\varangle \mathbb{O l} \bigcirc$ and sel ect fromlist, or refer to Appendix: Units for a list of valid units.

Error: No Units entered for Pl ot SI ope. Exit cancel ed.
Suggestion: Enter units. Press $\varangle 10>$ and sel ect fromlist, or refer to Appendi x : Units for alist of valid units.

Error: Units entered without Pl ot/Prism Area def aul t. Exit cancel ed.
Reason: Units were entered without entering val ues for pl ot size.
Suggestion: Go back and enter val ues, or del ete units.
Error: Use ei ther Pl ot or Prism Area, not both. Exit cancel ed.
Reason: BI OPAK cannot accept both Fi xed Pl ot Area AND Prism Basal Area Factor defaults. Because these defaults are used, if the pl ot area is not present in the Input Data File, there would be no way of determini ng which pl ot size def ault to use.
Suggestion: Go back and del ete one of the pl ot size specifications, or add pl ot size to the dataset.

Valid range ? to ?????.
Reason: Val ue entered is notwithin the valid range noted.
Suggestion: Enter a val ue that falls within the allowable range noted.

Data Input Format section--

Error: Number of deci nal s pl aces exceeds. Len.
Reason: Nunber of deci nal pl aces cannot exceed the total length of the data fiel d.

Suggestion: Correct the specification so that number of decimal places is equal to or less than the length of the data field.

Error: Use length I-?? for variable ???.
Reason: There is a maxi mumlength alloned for each of the data fields specified in the Data Input Fornat Vindow
Suggestion: Reduce the length of this data field.
Error: At least one parameter (BIO thru WD) must be incl uded.
Reason: Input parameters are necessary for sel ecting equations and executing cal culations. Bl OPAK cannot function without at least one paraneter in your I nput Data File.
Suggestion: Specify at least one of the paraneters present in the Input Data File. Make sure that all the paraneters to be used in the equations for the species in your dataset are incl uded. If uncertain as to which paraneters will be necessary, browse the Equation Library and note the paraneters listed for the equations for your particular species-.

Error: Speci es must be incl uded in Data Input Fornat.
Reason: Speci es code is necessary for sel ecting equations and executing cal cul ations.
Suggestion: Specify the location of Species code in the Input Data File. If Speci es code is not in your dataset, add it before proceeding.

Whrning: Data in Pos and Len field exactly overlap with another record. Reason: You have specified that tuo, or nore, different variables, for example, DBH and DBA, are occupying the same location in the Input Data File.
Suggestion: If you do not wish to intentionally specify different variables as occupying the same location in the Input Data File, then go back and change the specifications for the variables in question.

Whrning: Data in Pos or Len field overlap with data in another record.
Reason: I nput variable specifications indicate partial overlap of data fields in the Input Data File. For example, part of one data field (col ums 12-18) overlaps with part of another (col ums 16-23).
Suggestion: Look for incorrect specifications. Correct the position or length specification causing the overlap.

Components to Output section--

Error:
Component code must be associated with at least one strata.
Reason: BI OPAK will cal cul ate the specified component only for the lifeforns within the specified stratum For example, if BAT is specified as a component to be cal cul ated, and "S" is sel ected as the only stratum BAT will be cal cul ated only for speci es within the shrub stratum (all with S and K lifef orns).
Suggestion: Go back and toggle the "N" to "Y" for at least one stratum

Reassignments section--

Error:
Invalid ??????. Use F10 for list.
Reason: Code you have entered for either Lifeform Pl ant Component, Geographic Area, or Seral Stage is invalid. Press $410>$ for list of valid codes.

Suggestion: Enter valid codes only. If you want to nodify valid codes for all except Lifeform see Appendix: Customizing BI OPAK.

Error:

Species. not specified in Criteria section. Exit cancel ed.
Reason: You tried to save a reassi gnnent without speci es specified as a reassi gnnent criterion. Species is a required criterion for a reassignment.
Suggestion: Go back and specify the speci es to be reassi gned. Or use <Ctrl-Q> instead of <Ctrl-S> to exit.

Whrni ng:
Species MUST be specified when using Reassi gnnents.
Reason: When the cursor noves beyond the Species fieldinthe Criteria section, Bl OPAK warns that this is a required criterion.
Suggestion: Speci.fy the speci es to be reassigned. Or use <Ctrl-Q> to quit without saving changes.

Saving Run Design Fife section--

Changes have not been saved to the Run Design File.
Quit without savi ng? N
Reason: You may have nodified (entered the section and used <Ctrl-S> to exit) one or more sections of Design a Run without savi ng the Run Design File.
Suggestion: If you made any changes you want to save, go back and sel ect File from the Main Menu, and then Save the Run Design File.

Error: At Ieast one Component to Output must, be specified. Run Desi gn File was not saved.
Reason: No components were specified in Conponents to Output. Without component specification, BI OPAK would not be able to sel ect equations for cal cul ations.
Suggestion: Go back to the Default Settings Vindow and specify at least one component and stratum

Error: Geographic Area and/ or Seral Stage were not specified. Run Design File was not saved.
Reason: Both Geographic Area and Seral Stage must be specified. Each can be specified in Default Settings or in Data Input Fornat. Geographic Area and Seral Stage codes are necessary for BI OPAK to sel ect equations.
Suggestion: Go back to Default Settings and specify the Geographic Area and Seral Stage codes that best represents your data.

Whrni ng: Pl ot Area and/ or Sl ope were not specified. Areal cal cul ations are not possi ble.
Reason: Pl ot Area and Sl ope must both be specified in order to nake areal cal cul ations. Each can be specified in Default Settings or in Data Input Fornat.
Suggestion: If Pl ot Size or Sl ope is present in Input Data File, go back to Data Input Format and specify their locations in the file. If Pl ot Size or Sl ope is not in Input Data File, and all pl ots were of the sane size and slope, go to Default Settings and specify the size, slope, and units for both. If plots sizes differ, add pl ot size to your Input Data File, or split your dataset by pl ot size and do a separate run for each.

Library Editor errors and warnings

Most errors and warnings in the Li brary Editor are self-explanatory. A few may need further expl anation, however. If nessages in red boxes are encountered, see Appendix: Troubl eshooting, Strange and unusual behavi or and red error boxes.

All ni ne equation substitutions are full.
No equation can be sel ected - sel ection aborted.
Reason: There are al ready ni ne equation substitutions in the Reassignment Add/ Modify W ndow N ne isthe naxi mum
Suggestion: Check the equati ons you have al ready entered in the Reassignment Add/Mbdify Window Del ete any you do not want.

Equation not found.
Reason: No equation matches the specified equation key or equation number.
Suggestion: Use the wild card character (?) 'to be less specific in your search.
I nval id range - del etion aborted.
Reason: The endi ng equation number is smaller than the starting equation number.
Suggestion: Use an ending number greater than the starting number.
No equations are narked - sel ection aborted.
Reason: Marking equations is necessary for this procedure.
Suggestion: Use the mark function in the Edit Library Menu to mark the des ired equations.

Nb more than 9 equations can be sel ected!
Sel ection aborted.
Reason: Nine is the naxi mum number that can be sel ected for a given reassi gnment.
Suggestion: Unnark equations until there are a total of nine or fewer.

Errors when calculating plant components

IBF file not specified.
Reason: An Internedi ate Bi nary File must be specified for BI OPAK output bef ore components can be cal cul at ed.
Suggestion: Specify an Internedi ate Bi nary File. For nore informati on see Reference: Cal culate Pl ant Components.

ERROR IN BI OCODES:

DUPLI CATE IN XXX CODES.
Reason: The code XXX is used nore than once.
Suggestion: Double check the infornation in this section of Bl OCODES to match the specifications in Appendix: Customizing BI OPAK: BI OCODES File.

ERROR IN BI OCODES:
SECTI ON FOR XXX IS MSSI NG
Reason: The specified section is missing or invalidin BI OCODES file.
Suggestion: If you have not nodified the BI OCODES File in the BI OPAK di rectory then rei nstal BI OPAK to get a correct copy. If you have nodified it, double check the section information and title to match the requi red formats (see Appendi x : Customizing BI OPAK: BI OCODES File).

MDRE THAN 200 EQUATI ON REASSI GNMENT LI NES
Reason: Only 200 equation reassi gnments are allowed in a given run.
Suggestion: Reduce reassi gnnents to 200, or split theminto several runs.
MDRE THAN 400 EQUATI ON REASSI GNMENTS AND SUMMATI ON LI NES
Reason: Total number of equations specified as reassignments and summations in Reassi qnment Summarv V'̉ndow of Desi gn a Run exceed maxi mum of 400.
Suggestion: Reduce number of reassi gnnents so there are no nore than 400 equations specified as substitutions.
"SELECT SPECI ES" OPTI ON REQUESTED WTHOUT EQUATI ON REASSI GNMENT
Reason: The "Sel ect Onl y Reassi gned Speci es?" opti on was toggl ed to "Yes" in the Default Settings Window of Design a Run; however, no reassignments were speci fied.
Suggestion: Go back to Default Settings Window and change sel ection to "No," or specify at least one reassi gnment, see the section Ref erence: Design a Run: Equation Reassi gnments.

Errors when generating reports

These errors would occur when attempting to generate reports fromthe Generate Reports Window

IBF file not specified
Reason: An Inter medi ate Bi nary File is needed because reports are generated fromit.
Suggestion: Sel ect the Internedi ate Bi nary File from which you want to generate reports. See Reference: Generate Reports for nore information.

Nb reports specified
Reason: You tried to generate report(s) but did not specify any report to generate.
Suggestion: Specify the reports you want to generate, then sel ect Go.
COMPONENT CODE SECTI ON NOT FOUND IN BI OCODES
Reason: The section of Component Codes in the Bl OCODES file is missing or i nval i d.
Suggestion: Check the infornation and title in the Component Codes section agai nst the required fornats in Appendix: Customizing BI OPAK: BI OCODES File.

REPORT 1 SUMMARY TABLE OVERFLOW RECORD \#
Reason: Number of different speci es in one pl ot exceeds the naxi mumallowed (600) for the purpose of generating the Pl ot Summary Report.

Suggestion: The data nay be di vided so subgroups of plots or lifeforns (trees, shrubs) may be run separatel y. Process only those speci es for which you create reassi gnnents by setting the Sel ect Species flag in the Default Settings Window to Y, and making Equation Reassi gnnents for a subset of the species in the Input Data File.

REPORT 2 SUMMARY TABLE OVERFLOW RECORD \#
Reason: Number of different species in one stand exceeds the naxi mum al lowed (600) for the purpose of generating the Stand Summary Report.

Suggestion: The data nay be di vided so subgroups of plots or lifeforns (trees, shrubs) may be run separatel y. Process onl y those speci es for which you create reassi gnnents by setting the Sel ect Species flag in the Default

Settinss Window to Y, and naking Equation Reassi gnments for a subset of the species in the Input Data File.

UN T OF ???? NOT RECOGN ZED IN BI OCODES
Reason: Unit specifiedin Bl OCODES file is not a valid output unit. The Bl OCODES File has been modified.
Suggestion: Either reinstall Bl OPAK to get a valid Bl OCODES File, or search for incorrect units and correct them (see Appendi x: Units for acceptable Bl OPAK units).

Errors when viewing reports

Nb file sel ected to view
Reason: You tried to view a file when none was sel ected.
Suggestion: First sel ect the file to view then sel ect the menu itemto view that file.

Errors in reports

These errors describe probl ens BI OPAK encountered in sel ecting an equation (or suitable summation), cal cul ating a component, or naking areal cal cul ations. When these are generated, codes for the two rated nost serious are placed in the Error Report (nost error codes), Reports for People, and Machi ne-readable Reports. Codes for these errors are ordered al phabetically in approxi nate order from nore serious to less serious.

- This conponent not requested for this lifeform

Reason: This component was not requested for the commity stratum assigned to this speci es.
Suggestion: To have components cal culated for this plant, go back to the Components to Output Vindow of Design a Run and put a Y under the strata that hould incl ude the IIfef orm for this species.

A NO EST: No species code for this case.
Reason: Speci es code not in the Input Data File.
Suggestion: Add Speci es code(s) to your Input Data File and nake sure their location is given correctly in the Data Input Fornat Window

B NO EST: No parameter neasurenents for this case.
Reason: There are no parameter measurenents for this case in the data.
Suggestion: Add parameter measurenents and make sure their field(s) are given correctly in the Data I nput Fornat VIndow

C NO EST: Nb LF in data. No Reass w match spp, GA \& SS. Spp not in.EQN file.
Reason: Nb Lifeform was found in the data and Bl OPAK could not associate one with this speci es code. Bl OPAK searched for a lifeform code but found no Equation Reassignment with Criteria with matching Species, Geographic Area, and Seral Stage codes, and did not find this species in the Equation Library. No Lifeform could be associ ated with this plant, so no cal cualtions were made.
Suggestion: Have Lifeform cone in from the data, or make a Reassignnent with matching Species, Geographic Area, and Seral Stage codes and a lifeform code in the Primary Lifeform Def ault.

D NO EST: No LF in data. OK Reass match \& No Oriter w blank LF. LF not found.

Reason: $\quad \mathrm{Nb}$ Lifef orm was found in the data, BI OPAK found one or nore Equation Reassi gnnents with Criteria with natching Species, Geographic Area, and Seral Stage codes, and none of these Criteria had a blank lifeform however, no Lifeform could be associated with this plant.
Suggestion: Have Lifeform cone in fromthe data, or make a Reassignment with matching Speci es, Geographic Area, and Seral Stage codes and a Lifeformcode in the Primary Lifeform Default.

E NO EST: No LF in data. OK Reass natch \& Criteria w blank LF. LF not found.
Reason: No Lifef ormfound in the data, BI OPAK found one or more Equation Reassi gnments with Criteria with matching Speci es, Geographic Area and Seral Stage codes, and one or more of these Criteria had a blank LF, but no Lifeform could be associ ated with this plant.
Suggestion: Get Lifeformfromthe data, or nake a Reassi gnment with matching Species, Geographic Area and Seral Stage codes and a Lifeform code in the Primary Lifeform Default.

F NO EST: LF in data is inval id.
Suggestion: Correct the Iifef orm code in the data, or make a Reassi gnment with matching Species, Geographic Area and Seral Stage codes and a Iifeformcode in the Primary Lifeform Default.

G NO EST: Reass match. Spp/ LF/Comp not satisfied in .EQN file.
Reason: A matching Reassi gnment was found but the resulting
Speci es/ Li fef ormi Pl ant Component combination in the Request to Li brary was not satisfied in the library.
Suggestion: Change the Substitution in the Reassi gnment to point to a valid equation in the Li brary.

H Thi s error code is currently undefined.
I NO EST: Reass match. Geog Area $\mathcal{\&}$ or Seral Stg substit but GA SS not satis in . EQN
Reason: When the Geographic Area or Seral Stage code(s) is substituted by a Reassi gnnent they must be natched exactly by any candi date equation.
Suggestion: Change the Substitution to use an existing equation or add a new equation to the Li brary.

J Thi s error code is currently undefined.
K NO EST: Reass match: Local Eqn Numsubstit but LEN not satisfied in.EQN file.
Reason: When the Local Equation Number is substituted in an Equation Reassi gnnent every el enent of the Request to the Li brary must be natched exactly by a candi date equation.
Suggestion: Change the Substitution to use an existing equation or add a new equation to the Library.

L NO EST: Reass match: Maxi mum ESP (Equation Sel ection Penal ty) exceeded. Suggestion: Specify a hi gher val ue for the Maxi mum ESP in the Default Settings Vifndow or change the Substitution of the Reassi gnnent to specify an equation(s) with an ESP Iower that the Mexi mum ESP.

J Thi s error code is currently undefined.

M NO EST: One or more paraneters are missing for al l candi date equations. Reason: Al candi date equations require parameters not available for this case. Suggestion: Use an Equation Reassignment to substitute an equation that uses only available paraneters.

N NO EST: No match for Request to Libin. EQN si nce Spp/ LF/Comp not found at any ESP.
Reason: A suitable equation could not be found because none in the Equation List File has natching Species/ Lifef ormiPl ant component code combi nations. Suggestion: Use an equation Reassignment to substitute a suitable equation.

0 This error code is not used because it looks a lot like zero.
P NO EST: No match for Request to Libin.EQN since Spp/ LF/Comp not satisfied at any ESP.
Reason: A suitable equati on could not be found because none in the Equation List File have suitable Geographic Area/Seral Stage code conbi nations.
Suggestion: Use an equation Reassignment to substitute a suitable equation.
Q NO EST: Matchi ng Candi date Eqn found; Overextrapol ation and Max ESP exceeded.
Reason: One or nore candidate equations exist in the. EQN file that nould be suitable except their Equation Sel ection Penalty (ESP) exceeds the Maxi mum ESP and overextrapol ation contributed to their ESP.
Suggestion: Decide if this is a seri ous problem If so, make an Equation Reassi gnment to use an equation that you believe will give reasonable estimates for plants as this large; If not, iterativei y increase the Maximm ESP in the Default Settinss Window until a suitable equation is selected.

R NO EST: Matching Candi date Eqn found; Max ESP exceeded (no overextrapol ation).
Reason: One or nore candi date equations exist in the. EQN file that would be suitable except their Equation Sel ection Penalty (ESP) exceeds the Maxi mum ESP
Suggestion: Reassign this equation to one with a Iower ESP; or Iteratively increase the Maxi mum ESP in the Default Settinqs VIndow until suitable equations are sel ected.

S ND AREAL EST: Both fixed area pl ot and variable radius pl ot are specified.
Reason: BI OPAK cannot determine which pl ot to use to cal culate plant components on an areal basi s ($\mathrm{kg} / \mathrm{ha}$ or $\mathrm{lb} / \mathrm{at}$).
Suggestion: Bring the . RD file into Design a Run, Default Settings and change the Areal Defaults to specify one or the other.

T NO AREAL EST: Nei ther fixed area nor variable radi us pl ot are available.
Reason: Components cannot be cal culated on an areal basis (for example, kg/ ha) because nei ther pl ot area nor prismfactor is gi ven.
Suggestion: Either provide pl ot slope and one of pl ot area or prismfactor in the Data Input Fornat Vīndow or bring the. RD file into Design a Run, Default Settinss Vindow and change the Areal Defaults to specify one or the other.

U NO AREAL EST: Variable radi us pl ot specified but DBH missing for some tree(s).
Reason: When data are from a variable radius plot, all trees must have a DBH or the areal val ues (for example, kg/ha) for all components will be under esti mated.
Suggestion: Provide all DBH val ues in the Input Data File, or onit trees with
missing DBH女 knowing areal estimates of components will be underestimated.
V UARN NG Overextrapol ation occurred.
Reason: The parameter(s) for this case in your Input Data File is greater than the Iargest of those for the pl ants used to construct the equation.
Suggestion: If you are concerned, make a Reassi gnment to use a better equation.
W UARN NG I nval id Lifef orm encountered in . EQN file.
Suggestion: Bring this Li brary into the Equation Library Editor. Sort the Li brary by Lifeform Correct invalid Lifeform codes between the groups of valid codes. Create a new.EQN File.

X WARN NG: Inval id Lifef ormencountered in an Equation Reassi gnment.
Suggestion: Examine all Equation Reassi gnments and correct invalid codes in Criteria, Primary Lifeform Default and Substitution sections.

Y WARN NG: Invalid Lifeformencountered in Primary Lifeform Def aultin Reassi gnment.
Suggestion: Examine al I Primary Lifef orm Default codes in Equation Reassi gnnents and correct invalid codes.

Z This error code is currently undefined.
a INFORM Reassi gnment natch. Summation was specified in Reassi gnment Substitutions.
Reason: Reassi gnnent was used that specified a summation.
b I NFORM Cal cul ated component val ue is based on a def aul t sumnation. The Default Sumations are shown in figs. 2, 3, and 4. Actual equations used are shown in the Summarized Equation Use Report and Detailed Equation Use Report.
c MARN NG Equation used lacks paraneter range, so no extrapol ation test was done.
Reason: The Equation Li brary does not contain the range for one or nore parameters for this equation.
Suggestion: Determine if this is a problem The source information included in the Equation Li brary documentation may incl ude hopef ul infornation. If you are concerned, make an Equation Reassi gnnent to use a better equation.
d WARN NG: Taxonomic Lifeform was substituted for Coppice LF in Request to Li brary.
Reason: A tree or shrub lifeform code was used instead of the original coppice code to use an equation with a lower Equation Sel ection Penal ty (ESP).
Suggestion: If this is a problem make a Reassi gnment to use a better equation.
e WARN NG BAT was substituted for BFT for Herb, Grass, or Shrub LF.
Reason: An equation for BAT was used instead of the requested BFT.
Suggestion: May not be a problem because foliar bi onass often represents such a large proportion of the total bi onass of these lifeforns.
f WARN NG: One or nore minor Pl ant Components of a Summation were onitted.
Reason: A summati on was done to cal cul ate the requested plant component; however, at least one subcomponent (el enent of this summation) was missing. Suggestion: Determine if this is a problem The Summarized Equation Use

Report and the Detailed Equation Use Report show al I the components in a compl ete summation (under Request to Li brary) and those act ual ly used. Fi gures 2-4 show the built in Default Sumnations and nay be hel pf ul as guidel ines for building your own summations using Equation Reassi gnnents.
g WARN NG: Paraneter(s) was/ were missing for potential Candidate. Eqn(s) in.EQN file.
Reason: At least one equation was not consi dered because it required parameter(s) not available from your dataset. At least one equation with natching Speci es/lifef ormi Component had all needed parameters.
Suggestion: May not be a problem but if you want to use one of the ignored equations, the missing paraneter(s) would need to be added to your dataset.
h UARN NG Underextrapol ation occurred.
Reason: The parameter(s) for this case in your Input Data File is less than the smallest of those for the plants used to construct the equation.
Suggestion: If you are concerned, nake an Equation Reassi gnment to use a better equation.
i INFORM No LF in data, LF came from Reassign: Taxonomic LF of Substit section.
Reason: BI OPAK used the taxonomic lifeform (in the Li brary) for the species specified in the Reassi gnment Substitution.
Suggestion: May not be a problem Check if an acceptable equation was used.
j I NFORM No LF in data, LF came from Reassign: LF of Criteria section. Reason: BI OPAK used Iifeform specified in the Reassignment Criteria.
Suggestion: May not be a problem You can check the equation used.
k I NFORM No LF in data, LF cane from Reassi gn: LF of a Substitution Reason: BI OPAK used the lifeform specified in the Equation Key of a Reassi gnment Substitution.
Suggestion: May not be a problem Check to be sure an acceptable equation was used.

1. .. This error code is not used because it looks a lot like one.
m I NFORM A plant component val ue $\mathbf{c}=\mathbf{0 . 0}$ mas cal cul at ed and set to zero. Reason: The paraneters and equation used gave a val ue less than or equal to zero. Thi s usually happens with small plants. BI OPAK sets these val ues to zero.
Suggestion: You may add a new equation to the library that gi ves val ues approaching zero as plant size approaches zero. You nay decide, for example, that a simple equation through the origin and intersecting the first equation where the latter's predictions begin to be unreliable is appropriate. In this case, setting the input parameter upper bound for the new equation and the I ower bound for latter equation to this intersection will cause BI OPAK to use each over the intended range, provi ded the Local Equation Number is not specified in an Equation Reassi gnment.
n Thi s error code is currently undefined.
0 This error code is not used because it looks a lot like zero.
p, q, r Thi s error code is currently undefined.

Reason: All these error codes are currently undefined.

Known bugs

There are some bugs in BI OPAK that, al though annoying, al I ow continuance of the program

Desi gn a Run: Data Input Fornat: Soneti nes need to press <Ctrl-S> several times to save and exit from the Data Input Format Window

Design a Run: Data Input Format: After typing in a unit, if you del ete it, and then decide to sel ect fromthe $\langle\mathbb{F l O l i s t}$, the units do not show up in the wi ndow
Suggestion: Del ete all characters in cell before pressing $\langle\mathbb{F l} 0$.
Design a Run: Components to Output: If you enter a Component code, <Tab> to the strata, and then deci de to quit without saving, the error message, "At least one strata must be specified..", still will appear. It will disappear with the next keystroke.

Desi gn a Run: Components to Output: If you type all or part of a Component code, del ete it, and then sel ect a code fromthe $\& \mathrm{FlO>list}$ the component does not appear in the wi ndow
Suggestion: Del ete all characters in cell before pressing $\mathbb{C l O} \mathbf{O}$.
Design a Run: Reassignments: Sonetimes you will need to press <Ctrl-S> several ti nes to save and exit fromthe Reassiqnments Summary Window

Design a Run: Reassi gnnents: 《Esc>functions as <Ctrl-S>, that is, saves and exits.

Strange behavior and red error boxes

If BI OPAK is behaving in a strange, unusual, or inconsi stent nanner, a few thi ngs can be done. Examples of "strange and unusual behavi or" incl ude:

- BI OPAK will not start.
- BI OPAK crashes or hangs in the middle of your nork.
- FoxPro error messages in red boxes appear. Messages in these incl ude:
- File access deni ed...
- File does not exist...
- Not enough ($n e n o r y$, space. ..)...

Other messages may indicate Bl OPAK cannot find, open or write to a file. Sone messages give <<Cancel>> and << gnore>> options. These messages primarily in
Design a Run and Edit Equation Iibrary which are written in FoxPro.

Reboot your PC--

Turn the power off at the nain line switch, not the reset button, and wait 5 seconds bef ore turning it on again. Sone settings are not reset by just pushing the reset button. Sone sof tware will I eave some PCs in a condition that causes BI OPAK trouble. Now try to run BI OPAK agai n .

Check contents of BIOENV File--

The purpose of the BIOEN file (al ways on C : \backslash) is to hel p find problens in the envi ronnent within which Bl OPAK runs. BI OEN reports a snapshot of the DOS and

FoxPro envi ronnents created by BI OPAK. BAT (or BI OPAKN BAT if you are running BI OPAK over a net work) just bef ore the nain programis invoked. Probl ens caused by incorrect setting of a variable or file in the DOS or FoxPro envi ronnents are the easi est type to fix.

Check the contents of the BIOEN file. It does not matter whether the text in this file is upper or lower case.

1. DOS Envi ronnent:
a. BI ODI R should be set to the path for the Bl OPAK di rectory. Thi s di rectory contains all the Bl OPAK programfiles. Permissi on to write is not needed here. On a network, it is saf est if users cannot do so. If this does not point to the BI OPAK di rectory, you must rerun SETUP to correct this. People familiar with DOS can (1) renane the BI OPAK directory, (2) put the Bl OPAK files on a new drive or directory, or (3) change the DOS statement that sets it in the begi nning of BI OPAK. BAT (or BI OPAKN BAT on a net work).
b. BI OTMP shoul d be set to the path for the di rectory you have chosen for temporary files, with a backsl ash (\backslash) at the end. Be sure you have permissi on to write here and that it can hold at least four Mystes (six to be safer) of files. Bl OPAK will not run if you cannot, write the necessary temporary files here. If BI OTMP does not point to such a directory, rerun SETUP to correct this. People familiar with DOS can correct the DOS statement that sets it in the begi nning of BI OPAK. BAT (or BI OPAKN BAT on a net work).
c. OLDPATH shoul d be your DOS path before starting BI OPAK. Problens with this are best corrected by turning the PC of f and then on agai n.
d. PATH shoul d be your DOS path with a path to the BI OPAK di rectory added to the front end.
e. FOXPROCFG should be set to <Bl OTMP>>ppconfig.fp.

Probl ens with any of these nay be caused by insufficient DOS envi ronnent space (see DOS Envi ronment Space later in this section).
2. Contents of FOXPROCFG File ($\langle\mathrm{Bl}$ OTMP>BPCONFI G FP):

This file should contain:
path $=\langle$ BI ODI R>
resource $=\langle B|$ OTMP>f oxuser.dbf
tmpfiles $=$ <BI OTMP>
overlay $=\langle$ BI OTMP> overwrite
$\langle B I O D R>$ and $\langle B I$ OTMP> are the val ues of the respective DOS envi ronment variables. An error indicates an error in BI OPAK. BAT or BI OPAKN BAT, and BI OPAK mist be reinstalled to obtain a good copy of the . BAT file.
3. BI OTMP (<BI OTMP>) Directory List:

The BI OTMP di rectory must contain the file BPCONFIG FP. If it does not, there is an error in BI OPAK. BAT or BI OPAKN BAT, and BI OPAK must be rei nstalled to obtain a good copy of the . BAT file.

Increase BIOPAK temporary file storage space--
Check the free disk space available on the drive you specified for temporary Bl OPAK files. This drive is shown bri efly every tine Bl OPAK is started. You specified this drive when you installed BI OPAK and can specify another drive by reinstalling (or editing the BI OPAK. BAT file to change the "Set Bi ot $m p=<p a t h>")$. See Installation: System Requi rements for anount of space
needed. If problens arise we suggest increasing this val ue by 1 or 2 Mbytes.
Increase free memory--
Check the free system nenory, RAM usi ng MAPMEM COM on the BI OPAK di rectory or CHDSK, a DOS utility. See Installation: System Requirements for anount of space needed. If problens arise we suggest providing an extra free 10 or 20 Kbytes. See Installation: Installation on a PC for suggestions about freeing up RAM Then reboot your PC by turning of f the nain line switch.

Increase DOS environment space--
There may be insuffici ent DOS envi ronnent space allocated. This can be renedi ed by editing your C: \CONFIGSS file.

If you added 512 bytes when installing BI CPAK, then a second 512 bytes needs to be added to eliminate this as a potential problem The rel evant line in the C: \CONFIG SYS file should I ook similar to this: SHELL=C: \DOS COMMAND. COM / P / E: 1536. In this case, 1536 bytes are set for DOS envi ronnent space. Increase the number to 2048. The exact method for increasi ng envi ronnent space differs with different DOS versions, so consult the DOS nanual. Then reboot your PC by turning of f the main line switch.

Units

Section

171 Parameter units
171 Input Data File
172 Reassi gnments
172 Equation Li brary Reports
Component units
Equation Li brary
BI OCODES File

There are many locations within Bl OPAK where units cone into play. There are input paraneter units, output component units, and netric and English unit options. This appendix clarifies the use and validity of units in BI OPAK

You have several options for both metric and English parameter units. There is onl y one option each, however, for the netric and English component output units.

Parameter units

Input Data File--

The paraneter units allowed in the Input Data File are those recognized by BI OPAK (see Metric input and English input in the table 6). In the Data Input Fornat Window of Design a Run, the valid units can be sel ected from popups by pressing $\langle\mathrm{FIO}$. See Ref erence: Input Data File and Reference: Desi gn a Run: Data Input Format for a more detailed description.

Table 6--Valid Paraneter units

Parameter codes	Metric i nput	Engl ish i nput	St andard metric	St andard Engl i sh
Bl 0	g, KG	Ib	g	1 b
$\begin{array}{llll} \text { CIR, } & \text { DBA, } & \text { DBH, } & \text { HT, } \\ \text { LEN, } & \text { SAP, } & \text { WD } \end{array}$	cm dm m	in, ft	cm	in
COV, CR, FC	\% ratio	\% ratio	\%	\%
NP, NUM	NA	NA	NA	NA
SPA	cmin $\mathrm{dm}^{2}, \mathrm{~m}^{2}$	in , $\mathrm{ft}^{\mathbf{2}}$	cm^{2}	i n^{2}
VOL		$\mathrm{in}^{\mathbf{3}}, \mathrm{ft}^{\mathbf{3}}$	dm ${ }^{3}$	i n^{3}
PLOTAREA	m^{2}, ha	ft^{2}, ac	m^{2}	$f t^{2}$
PRI SMFAC	$\mathrm{m}^{2} / \mathrm{ha}$	$\mathrm{ft}^{2} / \mathrm{ac}$	$\mathrm{m}^{2} / \mathrm{ha}$	$\mathrm{ft}^{2} / \mathrm{ac}$
PLTSLOPE	\% deg	\% deg	\%	\%

Reassignments--

When performing equation reassi gnnents in the Reassi qnnents Add/ Modifv Vindow of Design a Run, the Reassi gnnent Criteria may incl ude up to three parameters and size ranges (see Reference: Design a Run: Reassignments). If these are included in the Equation Reassi gnnent, the parameter units are assuned to be the sane as those entered in the Data Input Format Víndow (see Metric input and Enql ish input in table 6).

Equation Library--

For equations in the Li brary, the specific units associ ated with paraneters are crucial. When View Modify is sel ected fromthe Edit Li brary Menu, the first screen to appear will be the orisinal and Final Eauations Window There are two pl aces where units cone into play: Equation as in Oriqinal Source and Equation as in Bl OPAK. The units as in BI OPAK must be the standard metric units shown in table 6. This of ten requi res transformations for an equation to be used by BI OPAK. See Appadx EqutionLi brary for more infornation on the equations, and Peferce Li brary Editor on how to add them

Reports--

The units associ ated with the paraneters listed in reports will be either the standard netric or standard English units. If you sel ect Metric as the output units in Generate Reports, the standard netric units will be associ ated with the parameters; and if English is sel ected as the output option, English standard will be the units associ ated with the parameters in reports (see Peferce Corecte Papots for nore infornation on the Metric/English output units).

Component units

Table 7--Val id Component units.

aput component Metro										
AFN PFN,	$\begin{aligned} & \text { AFO, } \\ & \text { PFO, } \end{aligned}$	$\begin{aligned} & \text { AFT, } \\ & \text { PFT, } \end{aligned}$	CSB,	CSD,	CZB,	CZD,	PCH,	PCS,	cm2	i n 2
VQW	VSB,	VST,	VSW	VSZ					cm3	i n3
HST									m	ft
VAE,	VCT								m3	ft 3
VY1,	VY2								$b d f t^{\text {a }}$	$b d f t^{\text {a }}$
BAE,	BAP,	BAT,	BBD,	BBL,	BBS,	BCD,	BCL,	BCT,	gm	lb
BFF,	BFN,	BFO,	BFT,	BFV,	BIT,	BKC,	BKL,	BLL,		
BLM	BLU,	BRT,	BSB,	BST,	BSW	BTT,	BUL,	BUN		

Equation Library--

The units for plant components in the Equation Li brary must be one of the netric units listed in table 7.

BIOCODES File--

The units for plant components in the BI OCODES file must be one of the metric units listed in table 7 .

GLOSSARY

Candi date Equation--Any equation (or equations in a summation) found in the Equation Li brary that neets the minimucriteria for equation sel ection. The minimm criteria are (1) the equation(s) is for the same species and Iifeform as the record in the Input Data File, and (2) the equation(s) uses parameters found in the Input Data File record.

Community Strata -- BI OPAK recognizes four strata classifications: Tree, Shrub, Herb, and Moss. The Tree Stratumincl udes onl y the tree Lifeform (T). The Shrub Strat umincl udes shrub (S) and coppice (K) Iifeforns. The Herb Stratum incl udes herb (H), grass (G), and sedge (C) Iifeforns. The Mbss Stratum incl udes noss (M, lichen (L), and bryophyte (B) lifeforns. The components output in reports are organized by stratum

Def ault Summation- - The summation chosen by BI OPAK when you do not specify a summation. These are different for different lifeforns. Fi gures 2-4 illustrate the BI OPAK def aul t sumation trees. The defaul t summation would occur when an equation does not exist for the specified component, yet equations for subcomponents are present in the Equation Li brary. BI OPAK will cal cul ate these subcomponents and sumthe results. The default sumation trees nay be nodified as described in Appendix: Customizing BI OPAK: BI OSUMM File.

Di agnostic Reports --There are three di agnostic reports: Summarized Equation Use Report (*. USE), Detailed Equation Use Report (*.DET), and Error Report (*.ERR). They can be produced from the Cal culate Plant Components Window of BI OPAK.

Equation Key --In general, the equation key incl udes species, lifeform plant component, geographic area, seral stage, and local equation number. In the Equation Li brary, it is al so a search function used to locate equations. (See al so: Substitution Key)

Equation Li brary -- BI OPAK cones with a library of about 1,000 equations for cal cul ating plant bi onass for species in the Pacific Northwest. An editor facilitates searching, sorting, adding, del eting, or nodifying the existing equations. The Iibrary can be nodified to neet your particular needs.

Equation Number--A number the user gi ves to an equation. Each equation in an equation library should have a uni que equation number.

Equation Reassi gnments--The user creates an equation reassignment to control the sel ection of equations from the Li brary. An Equation Reassi gnnent can hel p determine the Request to Li brary, thereby allowing the user to specify any or all of the el ements (that is, the Substitution Key species, lifeform plant component, geographic area, seral stage, and local equation number) that a Candi date Equati on must match to be sel ected. (See al so Match, Ori gi nal Equation Request, Reassignment Criteria, Request to Library, Substitution Key(s))

Equation Selection Penalties (ESPs)--In nany instances, the plants used to
construct the equations in the Library, will closel y match the plants in the Input Data File. There will al so be instances, however, when the plant sizes, geographic areas, seral stages, or other factors will not natch. VIth each misnat ch, there is an associ ated ESP.

When a request is made for an equation fromthe Library, BI OPAK will attempt to choose the "best" equation. It does this by selecting the equation with the I owest ESP (within the constraints set by the Maxi mum Threshol d and Summation ESP Levels specified in Default Settings). An ESP is greater than zero when one or more characteristics in the Candi date Equation do not exactly match the Original Request. For a nore detailed description of ESPs see Appendix: Equati on Sel ection Penalties. The individual contributions to the Equation Sel ection Penalties can be found in Appendix: Customizing BI OPAK.

Geogr aphic Area-- One of the factors consi dered when BI OPAK searches the Li brary for a suitable equation match. Refers to the geographic regi on from whi ch the dat a were collected (specified by you in Data Input Fornat or Def aul t Settings), and the regi on from which the particular equations in the Li brary were constructed.

Lif ef orm-One of the factors consi dered when BI OPAK searches the Li brary for a suitable equation match. Refers to the formin which the plant is growing, for example, shrub, coppice, or tree. May differ fromthe taxonomic lifeformfor a gi ven speci es. For example, the plant nay have a coppice lifeform and the taxonomic lifeform may be a tree. (See al so Taxonomic Lifeform)

Lifef orm Substitution--If the Input Data File does not contain Lifef orm codes, Bl OPAK will substitute the taxonomic lifef orm of the species from the Equation Library. If an equation reassi gnment is requested, the Iifef orm to be substituted nay be specified in the Substitution Key. This would then override the taxonomic lifeform substitution. See Appendix: Lifeform for nore details.

Local Equation Number--This number is used in the Equation Li brary to distinguish equations with identical equation keys.

Machi ne-readable Reports-- There are three Machi ne-readable Reports: I ndi vi dual Pl ant Report (*. IND), PI ot Sumary Report (*. PLT), and Stand Summary Report (*.STA). These reports can be generated for use by other software.

Match--In a Request to Li brary, a "natch" refers to a situation when the species, lifeform geographic area, seral stage, and measured parameters of the pl ant which was sampled "natch" those of an equation in the Library (that is, REQUST TO LI BRARY = CANDI DATE EQUATI ON).

In an Equation Reassi gnnent, a natch refers to a situation when the sel ection criteria "natch" a gi ven Original Equation Request. When this match occurs, the reassi gnnent is executed. (Note: Bl OPAK will search for an equation in the Li brary with an Equation Key which exactly matches this Substitution Key. If the Substitution Key is missing any val ues, there may be more than one equation with matching keys (blanks are considered a natch). If the Substitution Key is complete, there will be only one equation in the Li brary which it exactly nat ches.)

Maxi mum ESP Level--It determines the poorest acceptable equation natch you will allow The hi gher the Maxi mum ESP Level, the more flexibility in sel ecting
equations.
Original Equation Request--Incl udes the species, lifeform geographic area, seral stage, and neasured paraneters fromthe Input Data File; and the component to be cal culated from the Run Design nodul e. Geographic area and seral stage may cone from Run Design if they are not present in the Input Data File. Lifeform may cone from the Equation Library, or Run Design File, if it is not included in the Input Data File. If no Equation Reassignnent is specified, the Request to Li brary will be identical to the Original Equation Request.

Paraneters--Paraneters refer to the plant neasurenents, for exanple, DBH HT. The Input Data File contains paraneters measured in the field. The Equation Li brary lists paraneters used to construct the plant component equations. For a particular equation to be used, the Input Data File must contain the same paraneters as those found in the equation.

PI ant Components--The components of plants to be cal culated. User specifies the components in the Components to Output Window of Design a Run. The equations in the Li brary are used to cal culate the components requested. A list of the possible components can be found in Appendi x : Codes. These components incl ude bi onass, area, and vol une for leaves and flowers, branches, stens, crown, and roots.

Primary Lifef or m Def ault--Found in the Reassi snments Add/ Mdify Window of Design a Run. The user can assign a Primary Lifeform Default to a given species that will be used when lifeformis not present in the Input Data File. In this manner, BI OPAK will attach the Primary Lifeform Default to the speci es in the Original Equation Request. The Prinary Lifeform Default will al so be the lifeform associated with the species when desi gnating commity strata in reports (See al so Lifeform Substitutions, Original Equation Request, Request to Li brary)

Prism Basal Area Factor--The number of square neters per hectare (or square feet per acre) represented by each tree tallied when a prism or angle gauge is used to sel ect the trees measured in the field.

Reassi gnment Criteria- Found in the Reassi qnments Add/ Modify Vindow of Desi gn a Run. The list of Criteria sets the conditions by which a reassignment is to be executed. In other words, if these conditions exist, then proceed with a reassi gnment. The Criteria must incl ude the species. The Iifeform plant component to be cal cul ated, geographic area, seral stage, and neasured parameters are optional.

Request to Li brary--Used to request an equation fromthe Library. This is initiated when Cal culate Pl ant Components is executed. When there are no reassi gnments, the Request to Li brary is identical to the Origi nal Equation Request. When you specify an Equation Reassi gnment, and the Reassi gnment Criteria match the Original Equation Request, the Original Request is nodified by the Substitution Key(s). For example, the species of the plant which was sampl ed nay be substituted by another, or the Geographic Area code may be changed. - The Request to Li brary reflects these changes. (that is, REQUEST TO LI BRARY = ORI G NAL EQUATI ON REQUEST t REASSI GNENTS)

Seral Stage- One of the factors consi dered when BI OPAK searches the Li brary for
a suitable equation natch. Refers to the seral stage of the community from which the plant was sampled. The seral stage is based prinarily on the form of trees in the sampled community. If no seral stage is specified in the Input Data File, then the seral stage indicated in the Default Settings is used.

Substitution Key(s)--Found in the Reassi gnnents Add/ Modify \mathbf{V} indow of Desi gn a Run. The key(s) lists the val ues to be substituted for gi ven Reassi gnment Criteria. Each key must include the species. The Iifeform plant component to be cal cul ated, geographic area, seral stage, and local equation number are optiona?. When an Origi nal Request natches a Reassi gnnent Criteria, the Substitution Key(s) nodifies the Ori gi nal Equation Request to create the Request to Li brary. (See al so Equation Key, Equation Reassi gnments, Mat ch, Origi nal Equation Request)

Summation ESP Level--Thi s level determines when a summation will be attempted. If set at zero, there are no restrictions on summations. If set hi gher, def aul t summation will be at tempted onl y if the ESPs for the Candi date Equati ons are hi gher than the Sumnation ESP Level. If BI OPAK cannot find an i ndi vi dual equation to cal cul ate a specified plant component with a lower ESP val ue than the assi gned Summation ESP, then BI OPAK will begi n to consi der def aul t summations.

Taxonomic Lifef orm-The "true" lifef orm of the species. Thi s may differ from the IIfef orm as observed in the field. For example, a coppice lifeform nay have ei ther a tree or shrub Taxonomic Lifeform and a shrublifeform nay have a tree taxonomic lifeform and vice versa. Corresponds with the taxononic Iifef ormlisted for each species in the Equation Li brary. If ilfeformis not specified in the Input Data File, BI OPAK will assign the taxonomic Iifef orm from the Equation Li brary. (See al so Lifeform Lifeform Substitutions, Primary Li fef orm Def aul t)

Threshol d ESP Level--Thi s val ue determi nes the level at whi ch a Candi date Equation is consi dered accept able and BI OPAK stops its search for a better one. A user assi gned Threshol d ESP of zero will assure sel ection of the best equations.

Yariable Radi us Pl ot-Pl ot on whi ch trees are sel ected by a horizontal angle gauge, such as a prism (See also Prism Basal Area Factor)

INDEX

The page numbers given are often the first pages of multipage sections. The main di scussi ons of these topics can often be found in the detailed tables of contents for each section. See the G ossary for definitions of many terns.

Abstract iii
Acknow edgnents iii
Appendi ces 94
Area: See Pl ot area
Bi as 4
Bl OCODES file 142
cust omizing 103
example 104
Bl OLIB. EQN file 8
BI OPAK di rectory 7
Bl OSUMM file 109, 142
example 110
Cal cul ate plant components
in tutorial 76, 85
reference section 55
suggestions for making cal cul ation runs 22
wi ndow 55
Candi date equation
definition 173
Candi date equati ons 148, 149, 152
Codes
appendi x 95
Comminity strata
components to cal cul ate 36
definition 173
Components: See PI ant components
Components to output 35
in tutorial 73
Components to output wi ndow 36
Cover
handl ed differently than other paraneters 43
Criteria: See Reassi gnnents
Cust omizing BI OPAK
appendi $x 103$
Data collection and entry suggestions: See Suggestions for using Bl OPAK
Data input file: See Input data file
Data i nput fornat 26, 34
in tutorial 73
problem of two parameters in one field 86'
Data input format window 34
Default settings 32
areal def aults 33
equation sel ection penalty (ESP) levels 140
intutorial 71, 83

Default settings window 32
Defaul t summati on definition 173
Def aul t summation trees bryophyte (noss) and Iichen lifef orns 136
her b , grass and sedge Iifef orms 135
tree, shrub and coppice Iifef orns 134
Default summations 152
used by BI OPAK 149
Desi gn a run 29
in tutorial 71, 83
suggestions 22
See al so: Run desi gn file; Run desi gn nenu; Run desi gn report
Detailed equation use report: See Reports, di agnostic
Diagnostic reports: See Reports, diagnostic
Di mensi on anal ysi s 3
probl ens with the approach 4
Documenting cal cul ations 23
DOS
envi ronment space 7
shel I command 7
Edit equation Iibrary: See Equation Iibrary
Edit library menu 48
Equation documentation text file 49, 142
in tutorial 90
Equation key 43
definition 173
dupl i cates 42, 49
el enents 42
in equation library 42
searching for 50
Equation library 142
appendi $x 113$
creating 103
customi zi ng 103
definition 173
files 142
in tutorial 89
shi pped with BI OPAK 113
text docunentation in tutorial 90
See al so Li brary editor, Equation docunentation text file
Equation list file 55, 142
in tutorial 89
Equati on number 43
definition 173
searching for 50
See al so. (f or comparison) Local equation number
Equati on Reassi gnment: See: Reassi gnments
Equation sel ection penalty
appendi $x 131$
BAT substituted for BFT for herb, grass or sedge lifeform 106 cal cul ation 131
coppice lifef orm changed to taxonomic lifeformfromlibrary 106 coppice lifef orm substitution 132
default settings in tutorial 72
definition 173
equation list search failure 132
extrapol ations 132
geographi c area 105, 132
Maxi mum ESP I evel 137
nodi fyi ng 108
no val ue cal cul ated 106
over- and under-extrapol ation 106
parameter range unknown 106
seral stage 106, 132
setting ESP I evel s 140
substituting BAT for BFT 132
Summation ESP I evel 138
summations 133
threshol d ESP I evel 137
use in sel ecting equations 149
use of Sumnation ESP 139
Equation sel ection procedures: See Sel ecting equations
Equation summary wi ndow 47
Equation types
al lowed in BI OPAK 44
codes 44
forns 44
Equations
as in BI OPAK 53
as in original source 53
coeffici ents 44
docunentation 53, 54
new predi ctor variable 44
parameters (predi ctor vari abl es) 43
pl ant components (dependent variables) 43
requi rements, assumptions and possibilities 43
vi ewing documentation in tutorial 88
See al so Equation library, Original and final equations window
See al so Source of equation window, Sources of data widow
form see Equation type
Error report: See Reports, di agnostic
Errors
cal culating pl ant components 161
codes and nessages in reports 163
components to out put 159
Data input fornat 158
def aul t settings 158
design a run 157
generating reports 162
known bugs and work arounds 168
Ii brary editor 161
nessages 156
pl ant di nensi on anal ysis 4
reassi gnments 159
saving run design file 160
starting BI OPAK 157
strange behavi or and red error boxes 168
vi ewing reports 163
ESP: See Equation sel ection penalty

Exampl es: See Tutorial s
Extrapol ation errors 4
Fi el d sampling suggestions: See Suggestions for using BI OPAK
File sel ection wi ndow
in tutorial 83
File sel ection windows
instructions 15
sel ect an existing file 16
specify a newfile 16
Files
appendi $x 141$
equation Iibrary 142
in the BI OPAK di rectory 11
naming 23
run desi gn 141
user must be avare of 141
Forest Resources Systens Institute ii
Generate reports
in tutorial 77, 85
reference section 57
wi ndow 57
Geographi c area
codes 95
defaul t val ue 33
definition 174
in input data file 26
naki ng new codes 107
G ossary 173
Grouth form differences 4
Help system 17
I ndi vi dua 1 pl ant reports: See Reports for peopl e; Reports, nachi ne-readable
I nput dat a file 25, 26, 28, 141
vi ewi ng 60
Installation 6
errors 156
on a Network 9-11
on a PC 7, 8
Inter medi ate bi nary file 55, 142
expl ai ned 64
naming 56
sel ecti on and use 58
Li brary editor
addi ng equations 50
copying and editing equations 51
del eting equations in tutorial 89
editing an equation 51
error nessages 161
in tutorial 82, 86, 88
making new equation Iibrary and equation list files in tutorial 89
marking and saving equations in tutorial 89
nodifying and creating equation libraries 47
reassi gnment sel ection 51
ref erence section 41, 48
searching, 50, 82
sorting 49
sorting equations in tutorial 89
text documentation in tutorial 90
vi ewing and modi fying equations 51
See al so Equation library; Original and final equations window
See al so Source of equation widow Sources of data wi ndow
Lifef orm
appendi $x 144$
codes 96
definition 174
frominput data file 27
substitutions 144
Lifef orm substitution
definition 174
LI STR i i, 60
Literature cited 91
Local equation number 37, 42
definition 174
sel ecting equations 152
Local e ID 26
Main Menu 1
Match
definitions 174
in equation reassi gnment 151
Maxi mum ESP I evel
definition 174
Methods for esti nating pl ant components 3
Number of pl ants
handl ed differently than ot her parameters 43
Original and final equations wi ndow 52
Original equation request 151
definition 175
el ements in 147
See al so Reassi gnnents; Request to library
Paraneters
codes 27, 96
definition 175
frominput data file 27
units 27
See al so: Number of plants; Cover
Perfornance enhancenent 11
Pl ant
measurements 28
Pl ant components
codes 97
definition 175
naki ng new codes 106, 107
Pl ant ID 26
Pl ot ID 26
Pl ot si ze
default val ue 33
Pl ot sl ope
def aul t val ue 33
Pri nary lifef orm def ault
definition 175
See al so Reassi gnnents

Printing 66
in tutorial 77, 81
Prism basal area factor
defaul t val ue 33
definition 175
Problens
errors and suggestions: See Troubl eshooting
wise use \& avoi ding problens: See Suggestions for using BI OPAK
Reassi gnments
criteria 37, 39
criteria, definition 175
definition 173
details of function 150
di agram of function 148
entering 37
error messages 159
example 153
intutorial 83
natch bet ween criteria and original equati on request 151
primary lifef orm def aul $\mathbf{t} 37,40$
recommendations 154
sel ecting substitutions from an equation 1 i brary 40, 51
substitution key el enents 151
substitution keys 40
See al so Origi nal equation request; Request to library
Reassi gnnents add/ nodi fy wi ndow 37, 38
Reassi gnments summary wi ndow 37
Report, run desi gn 32
Reports for people
col um headi ngs defined 65, 66
error codes 66
error codes and messages 163
example in tutorial 77
I ndi vi dual pl ant report 64
pl ot summary report 64
ref erence section 64
sel ecting 58
Stand summary report 64
vi ewing 60
Reports, di agnostic
definition 173
detailed equation use report 62
di agnosi ng probl ens 23
error report 63
expl ai ned 61
interpretation in tutorial $\mathbf{8 0}$
printing 81
requesting 56
summarized equation use report 62
vi evi ng 60
Reports, general
eval uatiing results 22
ref erence section 61
summary of files 143
Reports, machi ne-readable
definition 174
error codes and messages 163
i ndi vi dual pl ant report 67
inf ornation cont ai ned in 67
pl ot summary report 67
reference section 67
sel ecting 58
St and summary- report 67
vi ewi ng 60
Request to library 148, 151, 152
definition 175
el ements 152
Ressi gnments
criteria el enents 151
Run design file 55, 141
in tutorial 74, 84
readi ng, creating \& savi ng 31
Run desi gn menu 29, 30
See al so Desi gn a Run
Run desi gn report 61, 142
example in tutorial 75
in tutorial 74
Sel ect only reassi gned speci es 33, 154
Sel ecting equations
by BI OPAK 137, 138
Sel ecting equations and summations
appendi $x 146$
by BI OPAK 148
by user 150
exampl e 149
exampl e--user sel ects 153
Seral stage
codes 95
default val ue 33
def inition 175
in input data file 26
naki ng new codes 108
Site and plant identification codes 26
See al so: Date ID; Locale ID; Pl ant ID; PI ot ID; Stand ID
Site condition effects 4
Sl ope: See Pl ot sl ope
Sources of data wi ndow 54
Sources of equation widow 53
Speci es
codes in Iibrary shi pped with BI OPAK 98
frominput data file 26
Stand ID 26
Stand summary report
See: Reports, for peopl e; Reports, machi ne-readable
Strata: See Comminity strata
Substitution keys
definition 176
See al so Reassi gnments
Suggestions for using BI OPAK 21
be caref ul 5
bef ore field sampling 21 documenting cal cul ations 23
field sampling and data entry 22
Maki ng cal cul ation runs 22
Summarized equation use report: See Reports, di agnostic
Summation ESP level
definition 176
Summations
in tutorial 86
nodifying def ault summation trees 110
System di agram 14
Taxonomic lifeform
definition 176
Techni cal support ii
Threshol d ESP l evel
definition 176
Title of a run 56
Troubl eshooting
appendi $x 156$
See al so Errors
Uni ts
appendi $x 171$
paraneters 171
pl ant components 172
sel ecting output units 58
specifying input units 35
User interface 15
Vari able radi us pl ot
definition 176
See al so Prismbasal area factor
View reports
in tutorial 74, 85
reference section 59
window 59

THIS PAGE LEFT BLANK INTENTIONALLY

THIS PAGE LEFT BLANK INTENTIONALLY

THIS PAGE LEFT BLANK INTENTIONALLY

Abstract

Means, Joseph E.; Hansen, Heather A.; Koerper, Greg J.; Alaback Paul B.; Klopsch, Mark W. Software for computing plant biomass--BIOPAK users guide. Gen. Tech. Rep. PNW-GTR-340. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 184 p.

BIOPAK is a menu-driven package of computer programs for IBM-compatible personal computers that calculates the biomass, area, height, length, or volume of plant components (levels, branches, stem, crown, and roots). The routines were written in FoxPro Fortran and C.

BIOPAK was created to facilitate linking of a diverse array of vegetation datasets with the appropriate subset of available equations for estimating plant components, such as biomass and leaf area. BIOPAK produces reports that are formatted for people and files that are compatible with other software. Other reports document the design of computation run and the equations used. BIOPAK includes a library of about 1,000 predictions equations and an editor for updating it. Most of the equations in the library were developed in the Pacific Northwest, including southeast Alaska.

Keywords: Dimension analysis, software, plant biomass, plant leaf area, plant volume, crown mass, crown volume, manual, microcomputer, users guide.

The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives-as directed by Congress-to provide increasingly greater service to a growing Nation.
The United States Department of Agriculture (USDA) Forest Service is a diverse organization committed to equal opportunity in employment and program delivery. USDA prohibits discrimination on the basis of race, color, national origin, sex, religion, age, disability, political affiliation, and familial status. Persons believing that they have been discriminated against should contact the Secretary, U.S. Department of Agriculture, Washington, DC 20250, or call 202-720-7327 (voice), or 202-720-I 127 (TDD).

Pacific Northwest Research Station
333 S.W. First Avenue
P.O. Box 3890

Portland, Oregon 97208-3890

[^0]: ${ }^{\text {a }}$ Each Pl ant Component code is made of 3 characters with the neani ngs gi ven here

[^1]: Trees (T)
 885 ABAM
 883 ABAM

