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Three general methods for obtaining measures of diversity within a population 
and dissimilarity between populations are discussed. One is based on an intrinsic 
notion of dissimilarity between individuals and others make use of the concepts of 
entropy and discrimination. The use of a diversity measure in apportionment of 
diversity between and within populations is discussed. 

1. INTRODUCTION 

There is an extensive literature on measures of diversity within populations 
and dissimilarity or similarity between populations. They have been used in 
a wide variety of studies in anthropology (Rao, 1948; Mahalanobis et al., 
1949; Majumdar and Rao, 1958; Rao, 1971a,b, 1977), in genetics (Cavalli- 
Sforza, 1969; Karlin et al., 1979; Morton and Lalovel, 1973; Nei, 1978; 
Sanghvi, 1953; Sanghvi and Balakrishnan, 1972), in economics (Gini, 1912; 
Sen, 1973), in sociology (Agresti and Agresti, 1978) and in biology (Sokal 
and Sneath, 1963; Pielou, 1975; Patil and Taille, 1979). An extensive 
bibliography of papers on measures of diversity and their applications is 
compiled by Dennis et al. (1979). 

Most of these measures are based on heuristic considerations; some are 
derived from mathematically well-postulated axioms, while others are 
constructed assuming some models for genetic and environmental 
mechanisms causing differences between individuals and populations. The 
object of this paper is to review some of these measures and to provide some 
unified approaches for deriving them. 

We consider a set of populations {xi), where the individuals of each 
population are characterized by a set of measurements XE (Q, -Y?), a 
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measurable space. The probability distribution function of X in rri is denoted 
by Pi and the convex set generated by a mixture of {Pi} by 9. A diversity 
coefficient (DIVC) is a mapping from 9 into the real line, which reflects 
differences between individuals (X’s) within a population. We denote the 
DIVC of xi by Hi (the symbol H is used to indicate heterogeneity). A 
dissimilarity coefficient (DISC) or a similarity coefficient (SIMC) is a 
mapping from f x .“P into the real line, which reflects the differences or 
similarities between populations. We denote a DISC between xi and 7cj by Dii 
and a SIMC by S,. 

2. DIVCS AND DISCS BASED ON INTRINSIC 
DIFFERENCES BETWEEN INDIVIDUALS 

2.1. General Theory 
We start first by choosing a non-negative symmetric function d(X,, X,), 

which is a measure of difference between two individuals with X=X, and 
X = X,, without any reference to the underlying probability distributions of 
X. The choice of d(X,, X,) naturally depends on the nature of the practical 
problem under investigation. We define the DIVC (diversity coefficient) of xi 
as 

Hi = - d(Xl 3 x*) pi(dxl) pi(dx*), J (2.1.1) 

i.e., as the average difference between two randomly drawn individuals from 
rci. Suppose that one individual is drawn from zi and another from rrj. Then 
the average difference is 

Hij = I_ d(X, Y x*) Pi(dXl) Pj(dx*). (2.1.2) 

We expect H, to be larger than the average of Hi and Hj, in which case the 
DISC (dissimilarity coefficient) between zi and zj may be defined by what 
may be termed as the Jensen difference (between ?ri and S) 

D, = H, - +(Hi + Hj). (2.1.3) 

The expression (2.1.3) will be non-negative for any i and j iff d(X,, X,) is 
chosen such that the function H defined on P as in (2.1.1) is concave. This 
can be easily verified by considering P, E ,Y, where 

p,=;lpi+ (1 -A)P,, O<L<l, (2.1.4) 
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and computing 

= l*Hi + (1 - A)’ Hj + 2L( 1 - ,I) H,. (2.1.5) 

Then 

= 24 1 - A)(H, - iHi - +Hj) = 2A( 1 - 1) D,. 

The concavity of H ensures that D, > 0 and vice versa. 

(2.1.6) 

Note 1. In the definition (2.1.1) of diversity no condition is imposed on 
the function d(X,, X,) except that it should be nonnegative and should have 
an intrinsic biological meaning. The logical requirement that the Jensen 
difference (2.1.3) should be nonnegative restricts the choice of d(X, , X2) to 
functions which induce a concave functional on .P. 

Note 2. We may define the expression (2.1.6) involving prior 
probabilities A and (1 - A) for xi and 7cj as a more general Jensen difference 
between xi and nj. Fortunately, this difference is only a constant multiple of 
(2.1.3). 

Note 3. The Jensen difference (2.1.3) is a function defined on ,Y X .?. 
Suppose that we are measuring dissimilarity between say two linguistic 
groups L, , L, residing in two different cities C, and C, . Let D:, and Dy2 be 
the DISCS between L, and L, in C, and C,, respectively, and D,, between 
L, and L, when the populations in the two cities are mixed. In such a case, 
we expect D,, to be smaller than (D:, + Df,)/2. This logical requirement 
demands that the Jensen difference (2.1.3) should be a convex function on 
.Y x P, which imposes a further restriction on the choice of d(X,, X,). 
Some studies based on the convexity of (2.1.3) have been recently made by 
Burbea and Rao (1980) and Rao (198 1). 

2.2. Some Examples 
(1) Let X E R”, a real vector space of m dimensions furnished with an 

inner product (x, y) = x’Ay, where A is a positive definite matrix. Define 

4x1, x2> = (X, - x2 3 x, -x2>. (2.2.1) 

Let X- Ni, Zi) in zi (i.e., X is distributed with mean vector pi and 
dispersion matrix Zi and not necessarily m-variate normal). Then 

Hi=2trAZi, 

H, = tr AC, + tr AZj + 6;Ahii, 
(2.2.2) 
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where tr stands for the trace of a matrix and 6, = ,ui -,uj. Applying the 
formula (2.1.3) 

D, = &Ad,. (2.2.3) 

If Zi = C for all i and A = C-l, (2.2.3) becomes the Mahalanobis D* 
between q and xi. 

(2) Let X = (x1 ,..., x,), where xi can take only a finite number of 
values. For instance, xi may stand for the type of gene allele at a given locus 
i on a chromosome. In such a case an appropriate measure of difference 
between two vectors X, and X2 is 

d(X,,X,)=m-Cd,, (2.2.4) 

where 6, = 1 if the rth components of X, and X, agree and zero otherwise. 
Let x, take k, different values with probabilities 

Girl 1*‘*) Pirk, 

in population 7ci. Define 

jr’ = E(q) = ; pfr, 
s=l 

when X,, X2 are independently drawn from q and 

jp = E(fj,) = 2 Pin Pjrs 
S=l 

when X, is drawn from 7ci and X2 from nj. Then 

Hi = 2 (1 -jj;‘) = m(1 -Jii), 
r=1 

(2.2.5) 

(2.2.6) 

(2.2.7) 

H,= 2 (1 -&‘)=m(l -Jij), 
i-=1 

D, = H, - +(Hi + Hj) 

= rn[f(Jii + Jjj) - Jij] = 4 2 2 (pirs - pjrsy. 
r=, s=1 

(2.2.8) 

The expression (2.2.8) without the factor m has been called by Nei (1978) as 
“a minimum estimate of the net codon difference per locus” and used by him 
and his colleagues (see the list of references in Nei, 1978) as a measure of 
genetic distance in phylogenetic studies. 
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Note 1. When m = 1, we have a single multinomial and the expression 
(2.2.8) reduces to the Gini-Simpson index 

1 - x Pf, 
i: 1 

(2.2.9) 

where p, ,...,pk are the cell probabilities. [This measure was introduced by 
Gini (1912) and used by Simpson (1949) in biological work.] The properties 
of (2.2.9) have been studied by various authors (Bhargava and Doyle, 1974; 
Bhargava and Uppuluri, 1975; Agresti and Agresti, 1978). 

Note 2. It is seen that Hi as defined in (2.2.7) depends only on the 
marginal distributions of xi, i = l,..., m, and is additive with respect to the 
characters examined. These properties arise from the way the difference 
function (2.2.4) is defined. The DISC (2.2.8) is specially useful in 
evolutionary studies as suggested by Nei (1978). 

Note 3. We may consider the joint distribution of (x, ,..., x,) as a 
combined multinomial with k= k, x ..- x k, classes and apply the formula 
(2.1.1) to measure diversity. In such a case the difference between two 
individuals takes the value 1 when all the components xi agree and the value 
zero if at least one is different. This leads to an expression different from 
(2.2.8), as the basic function for assessing the differences between individuals 
is not the same. When xi,..., x, are independently distributed, an explicit 
expression for the DIVC based on the combined multinomial reduces to 

H=l-[1-H(l)]...[l-H(m)], (2.2.10) 

where H(r) is the DIVC based on x,, the rth character only. It may be noted 
that the expression for DIVC given in (2.2.7) is H = ZH(r) whether xi are 
independently distributed or not. 

Note 4. If we consider the component x, in the vector X of Note 2 as the 
genotype of a diploid organism as determined by a pair of allels at locus r 
and define 6, in (2.2.4) as 1 if two individual organisms have the same value 
for x, and zero otherwise, then we get the DIVC and DISC based on the 
measure of genotypic identity devised by Hedrick (1971) and applied by 
Mitton (1977) in genetic studies. The expressions are the same as in (2.2.5)- 
(2.2.8) with pirs interpreted as genotype frequencies instead of gene fre- 
quencies. 

Note 5. If we consider x, as a genotype as in Note 4, but define the 
difference as 2m - Cd,., where 6, is the number of genes common to the 
individuals at the rth pair of loci (which may be two, one or zero), then we 
obtain the DIVC and DISC based on a measure introduced by Latter (1973, 
1980). 
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2.3. Apportionment of DIV 
With the DIVC as defined by (2.1.1) and using the concavity property, the 

DIV in a mixture of populations can be apportioned in a natural way as 
between and within populations. If P, ,..., P, are the distributions of X in 
n, ,,.., nk and A, ,..., A, are the a priori probabilities, then the distribution in 
the mixture 7c0 is i, P, + +. . + LkPk. It is easily seen that 

H,=~ZiHi + ~;C~i~jDij 

= H(w) + D(b), 
(2.3.1) 

where D, = H, - (Hi + Hj)/2 is the DISC between 7~~ and rcj, H(w), the 
DIV within populations, is the weighted average of the DIVs within 
populations and D(b), the DIS between populations, is the weighted average 
of the DISCS between all pairs of populations. The ratios 

F(b) = Do 
H(w) 

and G(b) = F 
0 

(2.3.2) 

have been used as measures of diversity between populations, of which the 
second expression G(b) is in the form of an index lying in the range (0, 1). 
Different choices of the difference function d(X,, X,) may give different 
values to the ratios F and G. In Section 3, we shall discuss this problem in a 
more general context. 

Let us consider k populations as in example (1) of Section 2.2, where in 
7ci 3 the m-vector variable X- bi, C) and choose d(X,, X,) as the 
Mahalanobis 0’ (formula (2.2.3) with A = ,I:-‘). Further let no be a mixture 
of 7c, )...) 7tk with a priori probabilities A,,..., A,. Then using the expressions 
(2.2.2), the decomposition (2.3.1) becomes 

Ho = H(w) + D(b) 

= 2m + ZLLiLj&yC-‘6ij (2.3.3) 

= 2m(l + V), 

where 6, = ,ui - ,LI~. Thus the diversity within populations is 2m and the ratio 
F(b) of (2.3.2) is V, which is the weighted combination of Mahalanobis D2’s 
for all pairs of populations (see Appendix by Rao in Mahalanobis et al. 
(1949) for the use of an estimate of V in the selection of variables to 
maximize dissimilarity between populations). Note that normality of X is not 
required. 

Let us consider example (2) of Section 2.2 and denote by rc,, the mixture 
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of x, )...) rrk with a priori probabilities 1, ,..., 1,. In this case (2.3.1) becomes, 
with Jii as defined in (2.2.7), 

H, = m[~Zi( 1 - Jii) + ~~~inj(~Jii + tJjj - Jij)], (2.3.4) 

which is the decomposition obtained by Nei (1973) and Chakraborty (1974). 
The ratio G(b) defined in (2.3.2) is 

G(b) = 
~~~i~j(~ Jii + fJjj - Jij) 

1 - Z&AjJij * 
(2.3.5) 

The ratio (2.3.5) obtained by considering only the 
with equal prior probabilities 

e,,= Jii+Jjj-2Jij 
” 4 - Jii - Jjj - 2Jij 

two populations xi and 5 

(2.3.6) 

is the hybridity coefficient of Morton (1973) who used it as a DISC between 
xi and xj in phylogenetic studies. 

2.4. Decomposition of DIVC and DISC 
In the method outlined in Section 2.1, the basic expression which 

determines the DIVC and DISC is the difference function d(X,, X,). Any 
decomposition of d(X,, X,) such as 

4X,, X,) = 4(X,, X,) + ... + 4(X,, X,) (2.4.1) 

provides us with a corresponding decomposition of the DIVC for rri 

H.=jq” + . . . I +@C’ > (2.4.2) 

where HI”’ = E [ d,(X, , X,) 1 Pi], and of the DISC between xi and rcj 

D.,z D!!’ + . . . + D(f) 
IJ lJ I, ’ (2.4.3) 

where 0::’ is obtained from Hi , O) H,(” and Hi;’ using the formula (2.1.3). 
Let X - (ui, Z) in xi and denote the eigenvalues of C by 8, > . .. > 8, and 

the corresponding normalized orthogonal eigenvectors by L, ,..., L,. If we 
choose 

4X,, X,> = (X, - X,>‘(X, - X,), 
i.e., the simple Euclidean distance in Rm, then 

d(X,, X,) = [L:(X, -X,)]’ + a.4 + (L’,(X, -X,)1’ (2.4.4) 
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gives the decomposition of DIVC for ni 

Hi=2trC=28,+a.. t28,, (2.4.5) 

which is the familiar decomposition of total variability with respect to m 
characters in terms of principal components (Rao, 1964). The corresponding 
decomposition of DISC between xi and xj is 

Dij = 6:,6, = (L; 6,)2 + *. . $ (L:, S,)‘, (2.4.6) 

where 6, = ,U~ - ,uj, the difference in the mean vectors for 7ci and ?ri. 
However. if we choose 

i.e., the Mahalanobis distance between two individuals then we have a 
different decomposition 

D, = s;a?- ‘8, = $ (L; 6,)’ + ‘*. t + (L:,Sij)2. (2.4.6) 
I m 

Note that the eigen vectors provide a transformation of the original 
measurements into uncorrelated variables, in which case the Mahalanobis 
distance can be written as the sum of Mahalanobis distances due to different 
uncorrelated variables. We can choose any arbitrary set of vectors 
M ,,..., M, such that M:CMj= 0 for i #j and MiZMi = 1, to obtain a 
decomposition 

D, = S;~- ‘6, = (M’, S,)’ + . . . + (M:, S,)’ 

= D!!’ f . . . + D(m) 
(2.4.7) 

IJ 1J ’ 

By combining some of the Dijs on the right-hand side of (2.4.7), we obtain 
decompositions of D, with a smaller number of components. 

If we choose 

M, = (CAT-‘o)- v2 C-b (2.4.8) 

in (2.4.7), where cr is the vector of standard deviations of the individual 
characters (i.e., square roots of diagonal elements of C), then 

(M; aij)* = Dzi (2.4.9) 

represents the component of Mahalanobis D2 between ni and 7cj due to the 
size factor as defined by Rao (1962, 197 1 b). Then 

Dij=D2=DfifD$,, (2.4.10) 
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where D:,,, the residual after subtracting the D* due to size, represents the 
distance due to shape factors between the two populations. 

Penrose (1954) obtained a similar decomposition of Karl Pearson’s CRL 
(coefficient of racial likeness) in terms of size and shape. The Penrose 
indices do not take into account the correlations that may exist between 
characters. For further details regarding the use of size and particular shape 
factors reference may be made to Rao (1962, 197 lb). 

2.5. Similarity Coeficients (SIMCs) 
Instead of a difference measure between two individuals, it may be natural 

to consider a similarity function s(X,, X,) and define Si, Sj and S, by 
taking expectations analogous to Hi, Hj and H,. Then the DIVC of q may 
be defined by a suitable decreasing function of Si, such as 1 - Si or -log Si, 
specially when the range of Si is (0, 1). The DISC obtained by choosing 
Hi = 1 - Si, provided it satisfies the concavity condition, is 

D, = +(Si + Sj) - S, 

and that by choosing Hi = -log Si is 

D, = ;(log Si + log Sj) - log S, 

= -log &, 

(2.5.1) 

(2.5.2) 

For instance, in the second example of Section 2.2, a natural definition of 
SVl~ X2) = (W/ m, which lies in the range (0, 1). Then 

Si = Jii, Sj= Jjj, S, = Jij, (2.5.3) 

where J, are as defined in (2.2.7), and using (2.5.1) and (2.5.2) we have the 
alternative forms 

D, = ;(Jii + Jjj) - Jij, (2.5.4) 

(2.5.5) 

The expression (2.5.4) is the same as the “minimum genetic distance” (2.2.8) 
of Nei (1978), and (2.5.5) is what he calls the “standard genetic distance.” 

Again, in the example (2), we may define the similarity function as 
(6, **- Smym instead of (6, + ..a + 6,)/m. The new function has the value 
unity when the gene alleles coincide at all the loci and zero otherwise. In 
such a case, when the characters are independent, 
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(2.5.6) 

where j:J’ are as defined in (2.2.5) and (2.2.6). Taking logarithms of (2.5.6) 
the corresponding DISC is 

(2.5.7) 

which Nei calls the “maximum genetic distance.” 
Since Si + Sj > 2S,, we may define an index of similarity 2S,/(S, + Sj) 

as proposed by Hedrick (1971). This lies in the range (0, 1) and the 
corresponding DISC may be defined as 

2s.. D, = -log 2 
Si + Sj 

(2.5.8) 

which is analogous to (2.5.7). 

3. ENTROPY AND INFORMATION 

3.1. Measures of Entropy 
A wide variety of DIVCs have been introduced through the concept of 

entropy and information. The general approach in these cases is basically 
different from that of Section 2.1, where a function d(X,, X,) measuring the 
difference between individuals X, and X, is chosen first and probability 
distributions of Xi and X, are used only to find the average of d(X,, X,). In 
practice, d(X,, X,) would be chosen to reflect some intrinsic dissimilarity 
between individuals relevant to a particular investigation. On the other hand, 
a measure of entropy is directly conceived of as a function defined on the 
space of distribution functions, satisfying some postulates. Some of the 
postulates are that it is non-negative, attains the maximum for the uniform 
distribution and has the minimum when the distribution is degenerate. Thus 
a measure of entropy is an index of similarity of a distribution function with 
the uniform distribution, and hence a measure of DIV. 

We shall consider the space of all multinomial distributions for simplicity 
of presentation of results, observing that the formulae for the continuous case 
can be obtained by replacing the summation by the integral sign. We 
represent the probabilities in the k cells of a general multinomial by pI ,..., pk 
and for a particular population 7zi by pi1 ,...,pik. Mathai and Rathie (1975) 
consider three general forms for entropy: 
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H = (1 - a) - ’ lo&L”; + 4r- ‘/.Z”;$ (3.1.1) 

H = [(Zpr”+br-l/Zp~r) - I] t (21Pn - l), (3.1.2) 

H = -Cpfr log p,/Zp$, (3.1.3) 

where all the summations are taken from 1 to k. When /I, = 1 for all r we 
have the familiar expressions introduced by Renyi (1961), Havrda and 
Charvat (1967) and Shannon (1948). 

All the functions (3.1.1)-(3.1.3) are non-negative, attain the maximum 
when pi are equal (maximum diversity) and are zero when pi = 1, pj = 0, 
j # i (minimum diversity). Mathai and Rathie (1975) discuss the various 
additional mathematical postulates which lead to these functions. Patil and 
Taille (1979) and Pielou (1975) provide interpretations of some of these 
functions in the context of ecological studies. 

With /3, = 1, (3.1.2) (3.1.3) and (3.1.1) for (x < 1 are concave and the 
method of Section 2.1 can be used to construct a DISC between 7ci and ~j. 
For instance, choosing (3.1.3) with p, = 1 as a DIVC, and a mixture 7~~ of 
populations 7ci and rcj with a priori probabilities L, and A,, we have 

Hi = - ~ pir log Pir, 
r= 1 

Ho=- f’ (~,Pir+~,Pj,)log(~,Pi,+~2Pj,), 

(3.1.4) 

r=1 

D, = H,, - 1, Hi - 12 Hj 

= 1, zpi, log Pir pjr 
(3.1.5) 

I1 Pir + l2 Pjr 
+ n,.gpj, log 

AlPir+A2Pjr’ 

which is the information radius defined by Sibson and Jardine (1971) from 
other considerations. 

Similarly, the DISC between rci and rcj obtained by choosing (3.1.2) with 
p, = 1 is 

D,= [.Z(A,p, + A,pj,)” - A,Zp: -A,Ep;] f (21--a - l), (3.1.6) 

which, when a = 2, reduced to the Euclidean distance, apart from a constant 
multiplier, 

2Aln2c(Pir -Pjr)‘. (3.1.7) 

The DISC obtained by choosing (3.1.1) with p,. = 1 and a < 1 is 

(3.1.8) 
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which may be negative for a > 1 since Renyi’s entropy is not in general 
concave for a > 1. The formulae (3.1.5~(3.1.8) involve explicitly the prior 
probabilities A,, A,. In many practical applications, it is appropriate to 
choose AI = I, = l/2 to define a DISC between two populations. 

3.2. Apportionment of Diversity 
By considering a mixture 7t0 of populations x,,..., 71, with prior 

probabilities A, ,..., Am we can obtain a decomposition of DIV in 7c,,, based on 
any choice of the H functions (3.1.2), (3.1.3) and (3.1.1) with a < 1, 

H, = CL,. H, + (H, - Z&H,), 

= H(w) + D(b), 
(3.2.1) 

as DIV within and DIS between populations. It may be noted that D(b) 
cannot in general be obtained as a weighted combination of DISCS between 
all pairs of populations as in (2.3.1) for the choice of DIVCs derived by the 
method of Section 2.1. (It is, however, true when H is chosen as in (3.1.2) 
with /?, = 1 and a = 2, in which case it also belongs to the class of DIVCs 
derived in Section 2.1). The ratio G(b) = D(b)/HO has been used by 
geneticists as an index of diversity between populations compared to within. 
However, as observed in Section 2.3, its value depends on the H function 
chosen. In their studies on diversity with respect to blood groups and 
biochemical markers, Lewontin (1972) used the H function (3.1.3) with 
p,= 1, and Nei (1973) and Chakraborthy (1974) used (3.1.2) with a = 2 
and /3, = 1. This raises the question as to what is a suitable choice of DIVC 
among the functions (3.1.1~(3.1.3) to study the apportionment of diversity 
as between and within populations. 

To examine this question, the following computations were made in the 
simple case of two binomial populations with equal prior probabilities. The 
class of H functions considered is a subclass of (3.1.2) and (3.1.3), 

Hca’ = (py +p; - 1)(2’-* - l), 

where for a = 1, the function is defined by the limiting value 

H’“=-p,logp,-pp,logp,. 

Table I gives the values of D(b)/H,, f or different combinations of the 
proportions for the two binomials. For each combination, the first entry 
corresponds to the value of G(b) for a = 1, the second for a = 2, the third for 
a = 2.5, the fourth for the optimum a, and the fifth entry within brackets 
gives a*, the optimum value of a. The blanks for certain combinations 
indicate that the values are the same as for the combination with the 
complementary values of (pl, ql), the binomial proportions of the two 
populations. 
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TABLE I 

Values of G(b) between Two Binomial Distributions Defined by pI and q1 

0.995 0.955* 0.834 
0.980 0.895 
0.981 0.897 
0.98 I 0.897 
(2.43) (2.44) 

0.714 
0.810 
0.815 
0.815 
(2.44) 

0.95 

0.90 

0.70 

0.10 0.30 0.50 0.70 0.90 0.95 

0.741 
0.808 
0.812 
0.812 
(2.45) 

0.622 
0.724 
0.730 
0.730 
(2.45) 

0.53 I 
0.640 
0.647 
0.647 
(2.45) 

0.505 
0.529 
0.530 
0.530 
(2.45) 

0.388 
0.45 1 
0.454 
0.454 
(2.45) 

0.305 
0.375 
0.380 
0.380 
(2.46) 

0.119 
0.160 
0.163 
0.163 
(2.47) 

0.359 0.248 
0.324 0.168 
0.321 0.161 
0.363 0.276 
(0.80) (0.60) 

0.242 0.127 
0.254 0.108 
0.253 0.105 
0.255 0.127 
(1.69) (0.97) 

0.167 0.065 
0.191 0.063 
0.191 0.06 1 
0.191 0.066 
(2.37) (1.25) 

0.03 1 
0.042 
0.043 
0.043 
(2.47) 

0.134 0.087 
0.045 0.019 
0.040 0.016 
0.173 0.124 
(0.54) (0.54) 

0.017 
0.009 
0.008 
0.019 
(0.73) 

* The first four vertical entries correspond to a = 1, 2, 2.5 and a,, respectively. The last 
entry within brackets is (I*, the optimal value. 

It is seen from Table I that the quantity G(b) is fairly stable for different 
choices of a except for low values of pi, q, in which case the DIVC based on 
Shannon entropy seems to exaggerate the diversity between populations. This 
is also seen from the computations presented in Table II on the geographical 
diversity between Makiritare Indians from seven different villages with 
respect to nine blood group and seven protein loci. The computations are 
based on the data kindly supplied by Chakraborty (see Chakraborty, 1974 
for his analysis of the data) using the formula (3.2.1) with equal a priori 
probabilities for the villages. The values of G(b) are fairly consistent for 
different values of a except when the average gene frequency is low as in the 
case of 6PGD (see Table II) for which the value of G(b) is very high when 
CT = 1. The diversity based on Shannon entropy is extremely sensitive at such 
low values and provides an exaggerated value for diversity, This 
phenomenon was also observed by Latter (1980), where he compared the 
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TABLE II 

Gene DIV of Makiritare Indians in Seven Villages 
and Index of DIS between Villages 

LQCUS 

a=1 a=2 a = 2.5 
Ave 

P HO G(b) Ho G(b) 4 WI 

Serological 
Diego 
Kidd 
WC) 
P 
Lewis 
SS 
WE) 
MN 
Duffy 

0.196 0.7139 0.1743 0.6303 0.1711 0.6240 0.1693 
0.336 0.9209 0.0250 0.8924 0.0320 0.8899 0.0325 
0.418 0.9805 0.040 1 0.9731 0.0542 0.9724 0.0554 
0.434 0.9874 0.0172 0.9826 0.0232 0.9821 0.0237 
0.466 0.9967 0.0791 0.9954 0.1044 0.9952 0.1191 
0.470 0.9974 0.0575 0.9964 0.0770 0.9963 0.0786 
0.563 0.9885 0.0058 0.9841 0.0079 0.9837 0.008 1 
0.714 0.8635 0.0263 0.8168 0.029 1 0.8128 0.0292 
0.736 0.8327 0.0122 0.7772 0.0142 0.7726 0.0166 

Average 0.9202 0.0415 0.8943 0.0448 0.8921 0.0486 

Biochemical 
AP 
HP 
Gc 
PGM, 
LP 
Alb 
6PGD 

0.0557 0.3101 0.0647 0.2104 0.0238 0.2054 0.0213 
0.424 0.9833 0.0650 0.9769 0.0866 0.9763 0.0884 
0.820 0.6801 0.043 1 0.5904 0.0432 0.5837 0.0427 
0.848 0.6148 0.0592 0.5156 0.0504 0.5086 0.0488 
0.876 0.5407 0.0084 0.4345 0.0052 0.4275 0.0047 
0.9857 0.1081 0.1293 0.0564 0.1719 ( 0.0547 0.1444 
0.991 0.0741 0.2503 0.0357 0.0678 0.0346 0.0934 

Average 0.4730 0.0561 0.4028 0.0521 0.3987 0.0522 

performance of diversity coefficients based on the Shannon entropy, 
Hedrick’s measure of genotype identity and Latter’s measure of gene identity. 
Based on these studies and Latter’s observation that “Shannon’s measure of 
information... has many convenient properties from a mathematical point of 
view, but is extremely difficult to interpret genetically,” it appears that the 
DIVC based on Shannon’s entropy is at a disadvantage compared to the 
others. 

4. DISCRIMINATION INDEX 

A general method of constructing DISCS is through the concept of 
discrimination between populations, i.e., the probability with which a given 
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individual can be identified as a member of one of two populations to which 
he possibly belongs. 

4.1. Overlap Distance (Rao, 1948, 1977; Wald, 1950) 

Let X be a set of measurements which has the probability density pi(.) in 
7ci and pi(a) in rrj. The best decision rule based on an observed value x of X, 
for discriminating between xi and rrj with prior probabilities in the ratio 1 : 1 
is to assign x to 

population rci if PiCx) > PjCx>Y 
(4.1.1) 

population 7ti if Pitx> < PjCx>3 

and to decide by tossing an unbiased coin when pi(x) =pj(x). The 
probability of correct classifications for the optimum decision rule is 

C, = f 1 pi(X) dx + 4 1 pj(x) dx, (4.1.2) 
RI R2 

where R, is the region pi(x) >pj(x) and R,, the region pj(x) > p,(x). The 
minimum value of (4.2) is l/2 which is attained when p,(a) =~](a), and the 
maximum is unity when the supports of pi(.) and pj( .) are disjoint. The more 
dissimilar the populations are, the greater would be the probability of correct 
classifications. Then we may define the DISC between zi and rrj as 

D, = C, - ), (4.1.3) 

which is in the range (0, f). It is seen that 

cij -; = + i lpi(X) -pi(X)1 dx, (4.1.4) 

which is a multiple of Kolmogorov’s variational distance or city block 
distance, which is a special case of the Minkowski distance 

[I 1 1/t I Pi(X) -Pj(X)l’ dx 3 t> 1. (4.1.5) 

In the development of decision theory, Wald (1950) introduced the 
distance function between rri and rrj, 

D, = max 1 Pi(x) - Pj(X> 1 dx y (4.1.6) 
R 
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where R represents any arbitrary region. The expression (4.1.6) is iden- 
tifiable as 

D, = 1 - 
I 

min[ pi(x), pi(x)] dx (4.1.7) 

= [Pi(x) -Pj(X)] dx, J RI 
(4.1.8) 

where R, is the region p,(x) >pj(x) as in (4.1.2). The expression (4.1.8) is 
the difference between the proportions of correct and wrong classifications 
by using the optimum decision rule (4.1.1). The expression (4.1.7) may be 
interpreted as the proportion of mismatched individuals in the two 
populations. 

4.2. Quadratic Differential Metric (Rao, 1948) 
Let us consider a family of probability densities p(x, O), 0 E 0, a k-vector 

parameter space. The Fisher information matrix at 0 is M= [mij(B)], where 

mij(@ = L dp dp dx. J p de, dej 
(4.2.1) 

We endow the space 0 with the quadratic differential metric 

LZm,(0) 68, &lj, (4.2.2) 

and define the distance between two points 8, and 0, as the geodesic distance 
determined by (4.2.2). The expression (4.2.2) is a measure of difference 
between two probability distributions close to each other and the distance 
defined by it may be useful in evolutionary studies where gradual changes 
take place in a population in moving from state Or to state 8,. In a recent 
paper Atkinson and Mitchell (198 1) have derived the expressions for 
geodesic distances based on (4.2.2) for well-known families of distributions. 

4.3. Invariants of Jeffreys 
Jeffreys (1948) defined what are called invariants between two 

distributions 

I,= /[Pi(X)]““- [Pj(x)]“m/mdX~ 1 m > 0, 
(4.3.1) 
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where the second expression is the sum of Kullback-Leibler information 
numbers 

Iij =Jpi(X) log $$ dx, Iji = lpi(X) log ‘g dx. (4.3.2) 
3 I 

When m = 1, 

11~ I I Pi(X) --Pj(x>l dx (4.3.3) 

which is Kolmogorov’s variational distance (overlap distance of Rao, 1948). 
When m = 2 

I,= hhi@-di$?l*dx I 

=2 l- ( J’ d&f%$%x , 1 

(4.3.4) 

which is extensively used by Matusita (1957) in inference problems. The 
expression (4.3.4) is a function of the Hellinger distance 

cq l.hmFw. (4.3.5) 

Rao and Varadarajan (1963) have defined the Hellinger DISC to be 

-log, 1 v’m dx. (4.3.6) 

The measure (4.3.5) was proposed by Bhattacharya (1946) as a DISC 
between populations rci and rrj and has been used in some genetic studies. 
The alternative expression (4.3.6) has an advantage over (4.3.5) in the sense 
that it is additive with respect to characteristics independently distributed in 
the populations. 

It may be noted that (4.3.3), which is Jeffrey’s invariant of order 1, is 
twice (4.1.8) which is Wald’s distance. Again (4.1.8) is twice (4.1.3) the 
overlap distance of Rao. 
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5. SOME REMARKS 

The paper discusses three unified methods of deriving measures of 
diversity and dissimilarity. Of these, the new method based on an intrinsic 
difference between individuals discussed in Section 2 offers a wide scope. The 
choice of the basic difference function has to be made on biological 
considerations depending on the problem under investigation. The 
discrimination approach of Section 4 also admits practical interpretation and 
the measures based on this approach are specially useful in the study of 
infraspecilic variation among taxonomical units (Jardine and Sibson, 1971, 
p. 33). The measures based on the concept of entropy considered in Section 3 
have attractive mathematical properties but are difficult to interpret 
genetically (Latter, 1980). 

For the apportionment of genetic diversity between and within 
populations, a number of diversity measures have been proposed by different 
authors (see Latter, 1980, Lewontin, 1972 and Nei, 1973). Among those 
studied, the differences in the estimates of G(b), the index of between 
population diversity, are of a small order except in the case of Shannon 
entropy (first used by Lewontin) which seems to give an exaggerated value 
for diversity between populations when the gene frequencies are at very low 
levels. Further work is needed to bring out finer distinctions among the other 
measures. 

There has been considerable debate on the choice of a dissimilarity 
measure in comparing populations. The problem cannot be answered without 
a reasonably precise statement of the objectives as observed by Smith 
(1977). If only a descriptive classification of the populations is intended 
through dendograms or other clustering methods, a fairly large class of 
measures may lead to the same conclusions. In such cases, it may be useful 
to try more than one possible measure to test the consistency of final 
conclusions (see Karlin et al., 1979). In some situations a choice can be 
made among a number of measures for particular applications, by first 
testing them on a group of populations whose interrelationships have been 
otherwise well established. That measure which gives results most consistent 
with available knowledge may be chosen. Such a procedure has been 
proposed by Pielou (1979) and applied in choosing one out of nine possible 
similarity measures in a study on the interpretation of paleoecological 
similarity matrices. In genetic studies, it is of some importance that the 
distance function should reflect in an easily interpretable way the basic 
genetic differences. In such a case the results may have some evolutionary 
significance (see Morton, 1973 and Nei, 1978). Further theoretical and 
empirical investigations are necessary to obtain more insight into these 
problems. 
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