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Abstract
The classic Jaccard and Sørensen indices of compositional similarity (and other indices

that depend upon the same variables) are notoriously sensitive to sample size, especially

for assemblages with numerous rare species. Further, because these indices are based

solely on presence–absence data, accurate estimators for them are unattainable. We

provide a probabilistic derivation for the classic, incidence-based forms of these indices

and extend this approach to formulate new Jaccard-type or Sørensen-type indices based

on species abundance data. We then propose estimators for these indices that include the

effect of unseen shared species, based on either (replicated) incidence- or abundance-

based sample data. In sampling simulations, these new estimators prove to be

considerably less biased than classic indices when a substantial proportion of species are

missing from samples. Based on species-rich empirical datasets, we show how

incorporating the effect of unseen shared species not only increases accuracy but also

can change the interpretation of results.
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I N TRODUCT ION

Ecologists who conduct field surveys of species richness
have long recognized that it is virtually impossible to detect
all species and their relative abundances with a limited
number or intensity of samples. Sampling limitations create
challenges for making accurate estimates of alpha diversity,
the number of species within local, approximately homo-
geneous assemblages, particularly for assemblages with high
species richness and a large fraction of rare species (Colwell
& Coddington 1994; Chazdon et al. 1998; Colwell et al.
2004; Magurran 2004). To meet this challenge, several
methods have been developed for estimating species
richness from sample data, either through extrapolation of
species accumulation curves, or through application of non-
parametric methods (see reviews by Bunge & Fitzpatrick
1993; Colwell & Coddington 1994; Magurran 2004; Chao, in
press). The latter approach involves the estimation of unseen
species (species that are likely to be present in a larger
homogeneous sample of the assemblage, but that are
missing from actual sample data). Because estimates of

unseen species are based on the number of rare species
observed within samples (Colwell & Coddington 1994;
Chazdon et al. 1998), either abundance data or replicated
incidence samples are required for richness estimation. In
the simplest richness estimators (e.g. Chao1, Chao2, or jack-
knife estimators), rare species are classified as species with a
total abundance of 1 (singletons) or 2 (doubletons) in an
abundance-based sample or that occur in only one sampling
unit (uniques) or in exactly two sampling units (duplicates)
in replicated incidence data. The abundance-based coverage
estimator (ACE) uses additional information based on those
species with 10 or fewer individuals in the sample (Chao
et al. 1993) and the corresponding incidence-based coverage
estimator (ICE) is based on species found in 10 or fewer
sampling units (Lee & Chao 1994; Chazdon et al. 1998;
Magurran 2004).

The same limitations that apply to estimating the alpha
diversity of species assemblages equally apply to estimating
the beta diversity or dissimilarity (complementarity, turnover
or distance) between two assemblages. The Jaccard index of
similarity and the closely related Sørensen index are the two
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oldest and most widely used similarity indices for assessing
compositional similarity of assemblages (sometimes called
!species overlap") and hence, its complement, dissimilarity.
Both measures are based on the presence/absence of
species in paired assemblages and are simple to compute
(Magurran 2004). Many other similarity indices exist that are
based on the same information: the number of species
shared by two samples and the number of species unique to
each of them (Legendre & Legendre 1998), and new indices
continue to appear (e.g. Lennon et al. 2001). A modified
version of the Sørensen index was developed by Bray &
Curtis (1957), based on abundance data (also known as the
Sørensen abundance index; Magurran 2004), and a large
number of other abundance-based indices have been
developed (Legendre & Legendre 1998), including the
widely applied Morisita–Horn index (Magurran 2004).

Despite their wide application in ecological studies, the
classic Jaccard and Sørensen indices, when computed for
sample data, perform poorly as measures of similarity
between diverse assemblages that include a substantial
fraction of rare species (Wolda 1981; Colwell & Coddington
1994; Plotkin & Muller-Landau 2002), because the sample
data are (usually wrongly) assumed to be true and complete
representations of assemblage composition. [Indeed, with
very few exceptions (e.g. Grassle & Smith 1976; MacKenzie
et al. 2004), nearly all existing approaches to measuring
similarity make this assumption.] In general, as we will show
with simulations, these measures are likely to severely
underestimate true similarity between two (genuinely sim-
ilar) assemblages that contain numerous rare species.
Because many species are missed by the samples, the rare
species that appear in one sample are likely to be different
than the rare species that show up in the other sample, even
if all are actually present in both assemblages. Similar
problems arise from comparing two samples of substantially
different size: simply because it contains fewer individuals or
sampling units, the smaller sample may lack species that
appear in the larger sample. In short, the underestimation of
similarity occurs because of the failure to account for unseen
shared species.

In principle, overestimation of similarity can also occur
when comparing undersampled, high-dominance commu-
nities in which the common species are widespread and rare
ones tend to be locally endemic. In this case, two samples
might yield the same few common species, but fail to reveal
rare species that would differentiate the assemblages in
larger samples (Colwell & Coddington 1994; Ruokolainen &
Tuomisto 2002 discuss a possible example). In nearly all
cases we have examined quantitatively, however, rarity
(either in nature or because of small sample size) increases
the chance that a species will be spuriously absent from one
sample but not from the other, thus negatively biasing
similarity indices. [Fisher (1999, Fig. 8) comes to the same

conclusion for several datasets, based on rarefaction tests.]
Moreover, for the new indices we present here, it can be
shown theoretically that sampling bias, when present, is
always negative. [The authors demonstrate the expected
negative bias mathematically (A. Chao, R. L. Chazdon,
R. K. Colwell & T.-J. Shen, unpublished data); it can be
proved for any abundance models given in Magurran (2004)
and Plotkin & Muller-Landau (2002).]

Recently, interest has intensified in the development and
evaluation of indices to measure beta diversity, or turnover
rate, of species assemblages (Duivenvoorden 1995; Lennon
et al. 2001; Arita & Rodrı́guez 2002, 2004; Condit et al. 2002;
Plotkin & Muller-Landau 2002; Koleff et al. 2003; Rodrı́guez
& Arita 2004), underscoring the need for robust statistical
estimators for inferring compositional similarity from sample
data. Increasing species turnover (decreasing similarity) with
increasing distance between sites may reflect spatial patterns
of dispersal or may be driven by increasing environmental
heterogeneity at greater scales (Harte et al. 1999; Hubbell
2001; Balvanera et al. 2002; Chave & Leigh 2002; Condit et al.
2002; Duivenvoorden et al. 2002; Ruokolainen & Tuomisto
2002; Rodrı́guez & Arita 2004; Valencia et al. 2004).
Unfortunately, most indices of beta diversity rely on the
same information as the classic Jaccard and Sørensen indices
and share the limitations discussed above.

With this problem in mind, Plotkin & Muller-Landau
(2002) developed a Sørensen-type similarity index for
abundance counts using a !parametric" approach that relies
on a gamma distribution to characterize species abundance
structure. Condit et al. (2002) adopt an approach to
measuring beta diversity using Leigh et al."s (1993) !codom-
inance" index F, the probability that two individuals chosen
randomly from each of two assemblages are the same
species. Although this measure is based on abundance data,
F, itself, is not a statistically valid index of similarity. For two
identical assemblages with many species, F tends to 0.
Moreover, it is possible for any two identical assemblages to
have any value of F from 0 to 1, depending on how many
species are present and patterns of relative abundance. It is
possible, however, to normalize F to produce a valid
similarity index. Chave & Leigh (2002) point out that the
Morisita–Horn index is a normalized version of F.

We begin by developing a new, probabilistic approach for
the classic Jaccard and Sørensen incidence-based indices.
We then extend this approach to formulate Jaccard-type and
Sørensen-type indices that consider species abundances. In
contrast to Plotkin & Muller-Landau (2002), we adopt a
non-parametric approach that does not require any
assumptions about species abundance distributions. We
then propose a method to estimate both incidence-based
and abundance-based Jaccard and Sørensen indices from
sample data, incorporating the effect of unseen shared
species.
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We then carry out sampling simulations with empirical
data sets to assess the relative performance of the
classic Jaccard and Sørensen indices; their new, abun-
dance-based Jaccard and Sørensen counterparts; and the
corresponding Jaccard and Sørensen estimators. We show
that incorporating the effect of unseen species substantially
reduces the sample-size bias of these estimators and
improves their suitability for inferring similarity (or its
complement, dissimilarity) between hyper-diverse assem-
blages for which a large proportion of species are missing
from samples. Finally, we illustrate an application of the new
abundance-based Jaccard index and the Jaccard abundance-
based estimator, using data from a successional study of
tree, sapling and seedling abundance of canopy species.
Based on data sets for rich, tropical insect and plant
assemblages, we show how incorporating the effect of
unseen shared species not only increases accuracy, but also
can change the interpretation of results.

DEVE LOP ING THE NEW IND I C E S AND
EST IMATORS

The classic Sørensen and Jaccard similarity indices

The classic Sørensen and Jaccard indices depend on three
simple incidence counts: the number of species shared by
two assemblages and the number of species unique to each
of them. It has become traditional to refer to these counts as
A, B and C, respectively (Table 1). The classic Jaccard and
Sørensen indices for incidence counts are then

Jclas ¼
A

Aþ B þ C
ð1Þ

and

Lclas ¼
2A

2Aþ B þ C
ð2Þ

(We use L for the Sørensen index to avoid confusion
with S for species.) There is a close, monotonic relation
between the two indices: Lclas ¼ 2Jclas/(Jclas + 1) and
Jclas ¼ 1/(2/Lclas ) 1).

Assume that there are S1 species in Assemblage 1 and S2
species in Assemblage 2. Let the number of shared species
be S12. Then, the incidence counts A, B, C in Table 1

correspond to the A ¼ S12, B ¼ S1 ) S12 and C ¼
S2 ) S12. Substituting these expressions in eqns 1 and 2,
we have an alternate way to write the classic indices that
will be required for the next steps in developing the new
indices:

Jclas ¼
A

Aþ B þ C
¼ S12

S1 þ S2 % S12
ð3Þ

and

Lclas ¼
2A

2Aþ B þ C
¼ 2S12

S1 þ S2
: ð4Þ

A probabilistic approach to the classic Jaccard
and Sørensen indices

The classic Jaccard and Sørensen indices consider only the
presence or absence (incidence) of species. Two pairs of
assemblages, one pair sharing abundant species but not rare
ones and the other pair sharing rare species, but not
common ones, will yield the same index value. From the
point of view of overall assemblage similarity, taking
similarity of assemblage composition to the level of
individuals often makes more sense (Magurran 2004). Our
next objective is to extend the incidence indices to take
account of the relative abundance of species, a prerequisite
for developing index estimators for sampling data that take
account of unseen rare species.

We must first provide a probabilistic derivation of the
classic Jaccard and Sørensen incidence indices. Suppose we
randomly select a species from Assemblage 1 and a species
from Assemblage 2 and then classify each member of the
pair according to whether it is a shared species or not. The
corresponding probabilities are shown graphically in Fig. 1
and specified in Table 2.

Although the probabilities in Table 2 are not counts, they
can be thought of as !normalized counts," because they sum
to unity. Substituting these probabilities into eqns 1 and 2,
then we have

Jclas ¼
A

Aþ B þ C

¼ ½ðS12=S1ÞðS12=S2Þ'
½ðS12=S1ÞðS12=S2Þ' þ ½ðS12=S1Þð1% ðS12=S2ÞÞ' þ ½ð1% ðS12=S1ÞÞðS12=S2Þ'

¼ S12
S1 þ S2 % S12

which is exactly eqn 3. Likewise, we have

Lclas ¼
2A

2AþBþC

¼ 2½ðS12=S1ÞðS12=S2Þ'
2½ðS12=S1ÞðS12=S2Þ' þ ½ðS12=S1Þð1%ðS12=S2ÞÞ' þ ½ð1%ðS12=S1ÞÞðS12=S2Þ'

¼ 2S12
S1 þ S2

which is the same as eqn 4.

Table 1 Species classification counts used in the classic indices

Assemblage 2

Present Absent

Assemblage 1
Present A B

Absent C –
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It might appear that we have made no progress, but
this probabilistic approach lays the groundwork for
developing abundance-based indices, which in turn allow
for the estimation of indices that take into account the
effect of unseen shared species. Note that, using this
approach, we can also calculate the chance that both
randomly chosen species are non-shared species (Case 4
as shown in Fig. 1 and Table 2). However, the basic
concept for the Jaccard and Sørensen indices is
based only on information for the other three cells
(Cases 1–3).

Extending the probabilistic approach to abundance-based
indices

Let the probabilities of species discovery (which depend
primarily on relative abundance, assuming random mixing
and equivalent detectability) in Assemblages 1 and 2 be
denoted, respectively, by (p1, p2, …, pS1) and (p1, p2, …, pS2),
where pi > 0, pi > 0 and

PS1
i ¼ 1 pi ¼

PS2
i ¼ 1 pi ¼ 1. We no

longer treat all species equally because some species are

common and some are rare. Instead, the basic idea for
handling abundance counts is that we treat all individuals
equally. Adapting the approach from the previous section,
we randomly select one individual from Assemblage 1 and
one individual from Assemblage 2. For each individual of the
pair, note whether it belongs to a shared species or not.

We now derive the general formulas for the abundance-
based versions of the Jaccard and Sørensen indices.
Without loss of generality, we assume the first S12 species
are shared species, that is, the shared species are indexed
by 1,2,…,S12. In Assemblage 1, let U denote the total
relative abundances of individuals belonging to the shared
species, U ¼ p1 + p2 + ( ( ( + pS12. Likewise in Assemblage
2, let V denote the total relative abundances of individuals
belonging to shared species, V ¼ p1 + p2 + ( ( ( + pS12.
Table 3 shows the probabilities that two individuals, one
from each assemblage, represent each of the usual four
categories.

Based on eqns 1 and 2 for the three probabilities (A, B
and C in Table 3), we obtain the following abundance-based
indices in terms of U and V:

Jabd ¼
A

Aþ B þ C
¼ UV

U þV %UV
ð5Þ

a1 a2

Case 1

a1 a2

Case 2

a1 a2

Case 3

a1 a2

Case 4

Species from a 1
is shared

Species from a2
is shared

Species from a 1
is not shared

Species from a2
is not sharedFigure 1 A graphical representation of the

meaning of shared species for two assem-
blages. Assemblage 1 (a1) is grey, Assem-
blage 2 (a2) is white. The grey dot represents
a species selected at random from Assem-
blage 1 and the white dot represents a
species selected at random from Assemblage
2. Case 1 is the only case in which both
species are shared species (but not necessar-
ily the same species). In Case 2, the species
chosen at random from Assemblage 1 is a
shared species, but the species chosen from
Assemblage 2 is not shared with Assemblage
1. The reverse is true for Case 3. In Case 4,
neither of the chosen species is a shared
species. These patterns are described mathe-
matically in Table 2.

Table 2 Probabilistic derivation of species counts for the classic
indices

Select any species from Assemblage 2

Shared Non-shared

Select any species from Assemblage 1
Shared A ¼ S12

S1

S12
S2

(Case 1)
B ¼ S12

S1
1 % S12

S2

! "

(Case 2)

Non-shared C ¼ 1 % S12
S1

! "
S12
S2

(Case 3)
1 % S12

S1

! "
1 % S12

S2

! "

(Case 4)

Table 3 Probabilities for individual-based species counts

Select any individual from Assemblage 2

Shared Non-shared

Select any individual from Assemblage 1
Shared A ¼ UV B ¼ U(1 ) V)
Non-shared C ¼ (1 ) U)V D ¼ (1 ) U)(1 ) V)
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and

Labd ¼
2A

2Aþ B þ C
¼ 2UV

U þV
ð6Þ

As U and V represent the total abundances of the shared
species in Assemblages 1 and 2, respectively, we see that
both indices reach 1 for identical assemblages and tend to 0
for disjoint assemblages. In the latter case, for example,
Labd ¼ 2/[(1/U) + (1/V)] tends to 0 as both U and V
approach 0.

Estimation of the abundance-based indices from sample
data

Up to now, we have considered only the species and
individuals observed in two assemblages. Both the classic
Jaccard and Sørensen and the new, abundance-based
versions assume full and complete knowledge of the two
assemblages being contrasted. In practice, we need to
estimate similarity indices from sample data, the task that we
turn to now. Our approach is non-parametric in the sense
that we do not need to postulate any particular species
abundance distribution to derive the estimators, which are
therefore valid under many statistical abundance models
(e.g. log-normal, broken stick, gamma, etc.). The derivation
does assume that the number of species is finite so that
species discovery probabilities are bounded below. [The
authors show that the estimators are valid under many of
the statistical abundance models (A. Chao, R. L. Chazdon,
R. K. Colwell & T.-J. Shen, unpublished data) (e.g.
log-normal, exponential, gamma, negative binomial, Zipf–
Mandelbrot, broken-stick models, etc.) that appear in
Magurran (2004, Table 2.1) or in Plotkin & Muller-Landau
(2002, Table 1).]

A random sample of n individuals (Sample 1) is taken from
Assemblage 1 and a random sample of m individuals (Sample
2) is taken fromAssemblage 2.Denote the species frequencies
in the samples by (X1, X2, …, XS1

) and (Y1, Y2, …, YS2
),

respectively. (Note that if a species is missing from a sample,
Xi or Yi will equal zero.) Thus, the pair of frequencies for the
S12 species truly shared by the two assemblages are
(X1, Y1)(X2, Y2)…(XS12

, YS12
). Assume that D12 of the S12

shared species available are actually observed in both samples,
and their frequencies are the first D12 pairs. Thus, an
additional S12 ) D12 species are shared by the two assem-
blages, but absent from one or both of the samples. The
greater the frequencies of rare, shared species observed in one
of the two samples, the more probable it is that additional
shared species are present in both assemblages, but are absent
from one or both samples. We refer to these as unseen shared
species.

To incorporate the effect of unseen shared species on the
probabilities of Table 3, we use the frequencies of observed

rare, shared species to estimate an appropriate adjustment
term for U and V to account for unseen shared species. We
first define the indicator function I(expression) such that
I ¼ 1 if !expression" is true and I ¼ 0 if !expression" is false.
Let f1þ ¼

PD12

i¼1 I Xi ¼ 1;Yi ) 1½ ' be the observed num-
ber of shared species that are singletons (Xi ¼ 1) in Sample 1
(these species must be present in Sample 2, but may have
any abundance). Now, let f2+ be the observed number of
shared species that are doubletons (Xi ¼ 2) in Sample 1.
Similarly, we define f+1 and f+2 to be the observed number
of shared species that are, respectively, singletons (Yi ¼ 1)
and doubletons (Yi ¼ 2) in Sample 2.

Then the proposed estimator for U is

Û ¼
XD12

i¼1

Xi

n
þ ðm % 1Þ

m

fþ1

2fþ2

XD12

i¼1

Xi

n
I ðYi ¼ 1Þ ð7Þ

Notice that the first term in the right-hand side of eqn 7
denotes the observed total of frequencies associated with
the observed shared species; the second term accounts for
the estimated effect of unseen shared species. Similarly, we
have

V̂ ¼
XD12

i¼1

Yi

m
þ ðn% 1Þ

n

f1þ
2f2þ

XD12

i¼1

Yi

m
I ðXi ¼ 1Þ ð8Þ

When f+2 ¼ 0 or f2+ ¼ 0, replace f+2 and f2+ in the
denominators by f+2 + 1 or f2+ + 1, respectively. If the
value of Û or V̂ is greater than 1 (which rarely happens),
then it is replaced by 1. Our proposed abundance-based
Jaccard and Sørensen estimators are

Ĵabd ¼
Û V̂

Û þ V̂ % Û V̂
ð9Þ

and

L̂abd ¼
2Û V̂

Û þ V̂
ð10Þ

The variances for these two estimators can be derived by
a bootstrap method. (The complete derivation of eqns 7
and 8 and details on the bootstrap procedure for computing
variance estimators for eqns 9 and 10 are available upon
request from the first author.)

Estimation of similarity indices from incidence frequencies

Because information about the frequencies and identities of
rare species provides the critical information for adjusting
similarity indices to account for the effect of unseen shared
species, a simple pair of lists of the species present in two
assemblages (incidence data) cannot be used, even in
principle, to adjust similarity indices for the effect of unseen
species. On the other hand, the estimation-based approach
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can be extended to replicated incidence (presence–absence)
data.

Suppose we take a set of w replicated incidence samples
from Assemblage X and a set of z replicated incidence
samples from Assemblage Y. For both sets of samples
combined, there are S species. The number of samples in
which a species is found in Assemblage X or Y is the
frequency for that species in that sample set. The frequencies
for species i are thus defined as

Xi ¼
Xw

j¼1

xij and Yi ¼
Xz

j¼1

yij ;

where xij and yij represent the presence (1) or absence (0) of
species i in sample j.

Note that Xi or Yi will be zero for some species, unless all
species are shared and observed.

Under the assumption that replicate incidence samples
are statistically homogeneous (within each assemblage), the
chance of a species being present in a particular sample is
proportional to its relative abundance in the assemblage, and
the frequency vectors Xi or Yi are thus statistical proxies for
the relative abundance of species in Assemblages X and Y
(e.g. Chao 2004; Colwell et al. 2004). Thus, with minor
changes, eqns 7 and 8 can be used to compute adjusted
probabilities that a randomly chosen incidence (species
detection) from each of the two assemblages will both
represent shared species (though not necessarily the same
shared species).

For replicated incidence data, f1+ is the number of observed
shared species that occur in exactly one sample (Xi ¼ 1) in
X and f2+ is the number of observed shared species that occur
in exactly two samples (Xi ¼ 2) in X; f+1 and f+2 are
the corresponding numbers for sample matrix Y. Define
the sum of the incidence frequencies for the matrices as

n ¼
XS

i¼1

Xi and m ¼
XS

i¼1

Yi :

Then the proposed estimators are

Ûinc ¼
XD12

i¼1

Xi

n
þ z % 1ð Þ

z

fþ1

2fþ2

XD12

i¼1

Xi

n
I Yi ¼ 1ð Þ

# $
ð11Þ

and

V̂inc ¼
XD12

i¼1

Yi

m
þ w % 1ð Þ

w

f1þ
2f2þ

XD12

i¼1

Yi

m
I Xi ¼ 1ð Þ

# $
ð12Þ

(The same modifications described for eqns 7 and 8 may be
applied here if f+2 ¼ 0 or f2+ ¼ 0.) Thus, our proposed
incidence-based Jaccard and Sørensen estimators are

Ĵinc ¼
ÛincV̂inc

Ûinc þ V̂inc % ÛincV̂inc

ð13Þ

and

L̂inc ¼
2ÛincV̂inc

Ûinc þ V̂inc

: ð14Þ

PER FORMANCE T E ST S : C LASS I C VS . NEW IND I C E S

Indices tested

We carried out performance tests for: (1) the classic Jaccard
and Sørensen indices (eqns 1 and 2); (2) the new,
abundance-based Jaccard and Sørensen indices (eqns 5
and 6); (3) the estimators for the abundance-based indices
(eqns 9 and 10); and (4) the replicated-incidence estimators
for the abundance-based indices (eqns 13 and 14).

Data sets used in the tests

We conducted the performance tests on a large, species-rich
data set for tropical rainforest ants (Longino et al. 2002),
collected using several replicated, mass-collecting techniques
at La Selva Biological Station in Costa Rica. Here, we present
representative results for three collection methods: Berlese
extraction of soil samples (217 samples, 4318 individuals, 117
species, of which 19were singletons),Malaise trap samples for
flying and crawling insects (62 samples, 1660 individuals, 103
species, of which 35 were singletons), and Fogging samples
from canopy fogging (459 samples, 26302 individuals, 165
species of which 19 were singletons). [Relative abundance
diagrams appear in Longino et al. (2002).] As Longino et al.
(2002) point out, these three methods intentionally sample
different, but overlapping segments of the local ant fauna.
Whereas the raw species sum for the three methods would be
117 + 103 + 165 ¼ 385 species, the actual number of
species captured by the three methods together was only
276 species. Parallel tests for other high-richness data sets,
including the rainforest tree data discussed later in this paper,
yielded concordant results (A. Chao, R. L. Chazdon, R. K.
Colwell & T.-J. Shen, unpublished data).

The tests

Although the classic Jaccard and Sørensen indices and our
new indices all measure !similarity," they are intended to
measure different aspects of this construct: the classic indices
ostensibly measure similarity in species composition while
ignoring relative abundance (although they are strongly
affected by it, when sampling is involved), whereas our new
indices [and many others (Legendre & Legendre 1998;
Magurran 2004)] explicitly consider relative abundance.
Thus, for any particular data set, differences in the absolute
magnitude of incidence- vs. abundance-based Jaccard or
Sørensen values (or indeed, differences between most other
indices of similarity) are meaningless, in themselves.
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Nevertheless, indices of compositional similarity can be
compared in terms of their performance in tests of
sensitivity to undersampling. Using the ant data, we illustrate
three tests: (1) Test 1: equal-sized samples from a single data
set (within-assemblage rarefaction); (2) Test 2: unequal-sized
samples from a single data set; and (3) Test 3: equal-
proportion samples from two data sets (between-assemblage
rarefaction). For purposes of these tests, we treated the ant
data from each collecting method (Berlese, Malaise, or
Fogging) as a separate, complete !assemblage," referred to
here as a sampling pool. Samples of specified sizes (in terms of
numbers of individuals) were then selected, at random, with
replacement, from these pools. Of course, not all species
present in a sampling pool are represented in smaller
samples. However, because sampling was done with
replacement, not all species are present even when the
number of individuals selected is the same as the number of
individuals in the pool.

RESUL T S

Test 1: Equal-sized samples from a single data set

All similarity indices yield a true value of 1 when a complete
sampling pool (assemblage) is compared with itself. What
happens when a similarity index is computed for two

random samples of a single sampling pool? If an index is
unbiased by sample size, it should yield a value of 1 when
applied to samples of any size. First, we randomly sampled
individuals (with replacement) from the pooled ant data for
a single collecting method to produce pairs of samples
having the same number of individuals as the pools
themselves (full samples). Next, we randomly selected
smaller samples, each totalling one-half the number of
individuals in the original sampling pool, then computed
similarity indices for this sample pair. We then repeated this
procedure for a pair of samples each 1/4 the size of the
original pool, then a pair 1/8 the size of the pool, and so on,
successively halving sample size, down to 1/64 the original
number of individuals. (Note that this is quite a severe test
of undersampling bias, even for these very large pools.) This
entire process was repeated 1000 times and means taken, for
each test of each index, and for each of the three ant
collecting methods.

Figure 2 shows representative results of this test for the
classic Jaccard and Sørensen indices (first column of panels,
Test 1: Berlese rarefaction). Clearly both of these indices
were quite sensitive to undersampling. Figure 3 (first column
of panels) shows the corresponding results for the new
indices for this test. The new abundance-based Jaccard and
Sørensen indices, without adjustment for unseen shared
species (Jabd and Labd), were also sensitive to sample size. In
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Figure 2 Random sampling tests of the classic Jaccard (Jclas, eqn 1) and Sørensen (Lclas, eqn 2) overlap indices. The graphs show the effect
on each index of considering random samples composed of 1/1 (Full), 1/2, 1/4, …, 1/64 of the abundances or incidence-equivalents in the
sampling pools, sampled with replacement. (The labels on the lower left graph are the same for all graphs.) Column 1 (Test 1: Berlese
rarefaction) shows similarity index values for equal-sized, paired samples from the Berlese ant data set. Column 2 (Test 2: Berlese unequal)
shows index values for comparisons of samples of decreasing size vs. a sample of the same size as the full Berlese ant data set. Column 3
(Malaise–Fog rarefaction) shows similarity index values for equal-proportion, paired samples (Test 3) from the Malaise vs. the Fogging ant
data set, a high-similarity comparison. Column 4 (Malaise–Berlese rarefaction) shows similarity index values for equal- proportion, paired
samples (Test 3) from the Berlese vs. the Malaise ant data set, a low-similarity comparison. The true value of each index for the sampling
pools considered are shown by horizontal dotted lines in the columns for Test 3 (Malaise–Fog and Malaise–Berlese rarefaction). The true
index value for Test 1 and Test 2 is 1.0, the top of the graphs.
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Figure 3 Random sampling tests the new overlap indices. The graphs show the effect on each index of considering random samples
composed of 1/1 (Full), 1/2, 1/4, …, 1/64 of the abundances or incidence-equivalents in the sampling pools, sampled with replacement.
(The labels on the lower left graph are the same for all graphs.) Columns are described in the caption for Fig. 2. Jaccard indices: Jabd is the new
abundance-based Jaccard index, not adjusted for unseen species, computed by eqn 5. Ĵabd is the corresponding abundance-based estimator
that takes unseen species into account, computed by eqn 9. The estimator based on replicated incidence data, Ĵinc, is computed by eqn 13.
Sørensen indices: Labd is the new abundance-based Sørensen index, not adjusted for unseen species, computed by eqn 6. L̂abd is the
corresponding abundance-based estimator that takes unseen species into account, computed by eqn 10. The estimator based on replicated
incidence data, L̂inc, is computed by eqn 14. The true value of each index for the sampling pools considered are shown by horizontal dotted
lines in the columns for Test 3 (Malaise–Fog and Malaise–Berlese rarefaction). The true index value for Test 1 and Test 2 is 1.0, the top of the
graphs. To allow a valid comparison of the incidence-based estimators (Ĵinc and L̂inc) with the corresponding abundance-based estimators
(Ĵabdand L̂abd, respectively), the X-axis for each incidence-based estimator was re-scaled so that the minimum number of incidences matches
the minimum abundance of the corresponding abundance-based estimator, thus equalizing the amount of statistical information.
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contrast, the Jaccard and Sørensen estimators, which include
the estimated effect of unseen shared species, proved to be
less sensitive to undersampling, remaining substantially
closer to 1 even for small samples (Fig. 3). This was true
for both the abundance-based estimators (Ĵabd and L̂abd) and
the estimators based on replicated incidence data (Ĵinc and
L̂inc).

Test 2: Unequal-sized samples from a single data set

A similarity index should ideally be robust to sample size not
only for equal-sized samples, but also for samples of
unequal size. To test for this property we computed
similarity indices for samples of successively smaller size, vs.
!full" samples, equal in number of individuals to the number
in the corresponding sampling pool. As with the first test, an
ideal index should remain at 1, regardless of the discrepancy
in sample sizes. Figures 2 and 3 (second column, Test 2:
Berlese unequal) show such a test for the Berlese sample ant
data, using samples created by the same scheme outlined for
the first method. Even more than in the first test, the classic
Jaccard and Sørensen indices (Fig. 2) were strongly affected
by the size of the sample, leading to a severe negative
bias when one sample was markedly smaller than the
full sample. In contrast, the new Jaccard and Sørensen
estimators (Fig. 3, second column) were strikingly resistant
to undersampling, including both abundance-based estima-
tors (Ĵabd and L̂abd) and the estimators based on replicated
incidence data (Ĵinc and L̂inc).

Equal-proportion samples from two data sets

It is all very well for a similarity index to be robust to sample
size in comparing paired samples from the same pool, but
an index is of little use if it does not retain that robustness in
comparing different data sets, while successfully detecting
compositional differences between them. We performed the
same sample size comparison procedures described for the
first set of tests, but instead of comparing sample pairs from
the same sampling pool, we compared successively smaller
sample pairs from the Malaise and Fogging [high similarity
(Longino et al. 2002)], and from the Malaise and Berlese
(low similarity) data sets. The results for the classic Jaccard
and Sørensen indices appear in the third and fourth columns
of Fig. 2. An ideal index would yield and maintain the true
value computed for the full pools (the dotted horizontal line
in each panel) in the face of rarefaction. The classic Jaccard
and Sørensen indices proved quite sensitive to undersam-
pling in this test (Fig. 2). The new abundance-based Jaccard
and Sørensen indices, uncorrected for unseen species (Jabd
and Labd in third and fourth columns of Fig. 3), also suffer
from undersampling bias, but the bias is quite substantially
reduced for their abundance-based counterparts corrected

for unseen species (Ĵabd and L̂abd in third and fourth
columns of Fig. 3) as well as for the corresponding
estimators based on replicated incidence data (Ĵinc and L̂inc

in third and fourth columns of Fig. 3).

APP L I CAT ION

As an example of the application of the new indices, we
apply the classic Jaccard index (eqn 1), the new abundance-
based Jaccard index (eqn 5) and its estimator (eqn 9) to
data from two mature and four second-growth rainforest
sites in Costa Rica. We examine compositional similarity
between species of trees ‡ 25 cm diameter at breast height
(DBH; canopy individuals), canopy tree saplings (1–5 cm
DBH) and canopy tree seedlings (> 20 cm height, but
< 1 cm DBH) within four second-growth forests of
different age since pasture abandonment and in two old-
growth forests in the same study area. During early stages of
succession, when the forest canopy is first beginning to
close, fast-growing, shade-intolerant colonizing tree species
are present as canopy trees and are also found as smaller
individuals in the understory, as seedlings and saplings. As
time progresses and the understory becomes more shaded,
these shade-intolerant tree species are eliminated from the
seedling and sapling pool and shade-tolerant species readily
colonize these small size classes. These shade-tolerant
species are represented by seedlings and saplings, but have
few or no canopy trees present, gradually augmenting tree
species richness as the forest matures (Guariguata et al.
1997; Table 4). Thus, we would predict that, as secondary
forests mature, compositional similarity between tree species

Table 4 Observed patterns of species richness of tree seedlings,
saplings and canopy individuals in 1 ha plots in four second-
growth and two old-growth forests in year 2000

Site Age
Sobs
seedlings

Sobs
saplings

Sobs
canopy trees

LSUR 15 45 68 12
TIR 18 49 74 16
LEP 23 47 67 24
CR 28 57 91 33
LSUR old-growth > 200 47 101 37
LEP old-growth > 200 69 102 43

All trees and saplings were marked and measured for diameter
within a 1 ha plot in each forest. Seedlings were sampled in 144
1 · 5 m quadrats within the 1 ha plot, for a total area sampled of
0.072 ha. In these analyses, we included only canopy tree species;
shrubs, treelets and midstory trees were excluded. Note that young
sites show a low number of canopy tree species per ha (individuals
‡ 25 cm DBH) and fewer sapling species compared with old-
growth forests, but differences in seedling species richness were
less pronounced.
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and seedlings or saplings would initially be high, but would
quickly decline to a minimum during intermediate stages of
succession and then begin to increase later in succession as
shade-tolerant trees reach reproductive maturity and pro-
duce seedlings that can establish, grow and survive.

The classic Jaccard index (eqn 1) showed low compo-
sitional similarity between trees and seedlings for the four
second-growth forests compared with the old-growth
forests, with similarity decreasing slightly with age among
the four second-growth forests (Fig. 4). Similarity between
trees and saplings, in contrast, showed gradual increases
from the youngest forest to the older second-growth forest,
continuing the trend to old-growth forests (Fig. 4).

The abundance-based Jaccard index (eqn 5) showed a
strikingly different pattern across the six forest stands.
Compositional similarity between seedling and tree assem-
blages and between sapling and tree assemblages was
initially high in the youngest stand, as we had predicted. As
the forest matures, tree seedling and sapling pools become
enriched by shade-tolerant species not represented as
canopy trees, resulting in a decreasing compositional
similarity that reached a minimum in the 23-year-old
LEP stand (Fig. 4). This minimum similarity represents a
point in forest succession of maximum recruitment
limitation for both seedlings and saplings. In the oldest
second-growth plot, CR, the abundance-based Jaccard
index began to increase, reflecting recruitment of shade-
tolerant species in all three-size classes (Fig. 4). The
similarity index continued to increase and stabilized at
0.4–0.5 in the two old-growth stands. With the exception
of one old-growth stand, similarity indices were higher for
seedlings vs. trees than for saplings vs. trees. At the scale
of 1 ha plots, compositional similarity between canopy
trees and seedling and sapling size classes in old-growth
forests was comparable to that observed within a 15-year-
old second-growth forest, but greater than that observed in
second-growth forests of intermediate age. By design, the
abundance-based Jaccard index responds sensitively to
changes in total relative abundances of shared species
during forest succession.

The abundance-based Jaccard estimator (eqn 9), which
incorporates the effects of unseen shared species, showed
similar general trends across stands when compared
with the abundance-based Jaccard index (Fig. 4). The
28-year-old second-growth stand, however, had nearly
comparable estimates of similarity compared with the
two old-growth stands, suggesting that the estimator is
responding to rare or infrequent species that are shared
between the size classes (Fig. 4). The estimator for sapling
vs. tree similarity was higher than for seedling vs. trees in
the TIR second-growth site, indicating that this stand has
more rare species of shared saplings than seedlings.

CONCLUS IONS

Because similarity is a qualitative human construct, it has no
precise mathematical definition. Nevertheless, measuring
!similarity" relies on quantitative indices devised for the
purpose, and in practice, we may expect that similarity
indices fulfil reasonable criteria for their mathematical
behaviour (Legendre & Legendre 1998). Given indices that
make sense mathematically, it is their statistical performance
under the realities of field sampling that we have concerned
ourselves with here, particularly for species-rich taxa for
which complete inventories are impractical or even
impossible.
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Figure 4 Compositional similarity between canopy trees and
seedlings and canopy trees and saplings in four second-growth
forests of increasing age and in two old-growth forests. Results are
shown for Jclas, the classic Jaccard index (eqn 1; top panel), for the
new abundance-based Jaccard index, Jabd (eqn 5) not adjusted for
unseen species (middle panel), and for Ĵabd, the new abundance-
based Jaccard estimator that takes unseen species into account
(eqn 9; error bars are 1 SE, computed by a bootstrapping
procedure; details available from the first author; A. Chao, R. L.
Chazdon, R. K. Colwell & T.-J. Shen, unpublished data). These
analyses include only canopy tree species; shrubs, treelets and
midstory tree species were excluded.
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Using sampling simulations applied to representative
field data sets, we confirmed that two of the most widely
used classic indices, Jaccard and Sørensen, are negatively
biased under conditions of undersampling, often quite
substantially (Fig. 2). Our objective was to develop new,
probability-based indices that reduce undersampling bias by
estimating and compensating for the effects of unseen,
shared species. We based a new similarity index on the
probability that two randomly chosen individuals, one from
each of two samples, both belong to any of the species
shared by the two samples [not necessarily to the same
shared species, the basis of F (Chave & Leigh 2002; Condit
et al. 2002) and the Morisita–Horn index]. This approach
opened the way to the crucial step, adjusting this probability
to account for the chance that larger samples would reveal a
larger proportion of shared species. As anticipated, the new
indices consistently reduced undersampling bias in the per-
formance tests, in most circumstances quite substantially.
Inevitably some bias remains, especially under severe
undersampling and for highly dissimilar samples. Under
such conditions, relatively little information exists to guide
bias reduction.

Ecologists distinguish two aspects of the compositional
similarity of species assemblages: similarity of species lists
(incidence) and similarity of species" relative abundances.
Classic abundance-based indices (e.g. Morisita–Horn or
Bray–Curtis) match abundances, species-by-species. Our
new indices take an intermediate path, by assessing the
probability that individuals belong to shared vs. unshared
species, without regard to which species they belong to.
Unfortunately for many studies, unreplicated, pure incidence
data (pairs of species lists) provide no information that can
be used to estimate the number of unseen, shared species.
In principle, it may be possible to derive estimators that use
abundance data to correct pure incidence similarity indices
for unseen species, but it is currently statistically difficult for
biologically realistic data. However, we recommend the new
indices for any application in which not only species
matching but similarity of relative abundance is of interest.
Moreover, these new indices are better suited than the
corresponding classic indices for assessing compositional
similarity between samples that differ in size, are known or
suspected to be undersampled, or are likely to contain
numerous rare species.
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