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Raunkiaer’s life forms based on position of perennating buds:

The guts of Raunkiaer’s system was the classification of plants according the
position of the overwintering (perennating) bud.

Phanerophytes are plants that have the perrenating buds on aerial shoots, as is
the case with most trees.

Chamaephytes aer plants that have the buds near the ground surface, as is the
case with most dwarf shrubs.

Hemicryptophytes are plants with buds at the ground surface.

Geophytes are plants with the overwintering buds beneath the ground surface
and includes all plants with bulbs or tubers, such as lillies and potatoes.

Helophytes are plants which have submerged rhizomes. Many sedges have
this type of bud.

Hydrophytes are true aquatic plants with their buds in the water.
Therophytes are plants with no buds. Desert annuals are therophytes.
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Figure 6-3 Diagrammatic represantation of Raunkiaer's life forms. Unshaded
parts of the plant die back during unfavorable seasons, while the solid black
portions persist and give rise to the following year's growth. Proceeding from left
to right, the buds are progressively better protected (after Raunkiaer 1937).
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Figure 6-4 Proportion of plant life forms, classified according to Raunkiaer

(1934, 1837), in various climatic regions (after compilations of Richards 1952,
Dansereau 1957, Daubenmire 1968).

ONRNNRRNRNNNN

AN

DOOONDDIONN




6r .
~
S
a %
4 ~ 3 ‘Qd a
AR
Ei . k)
@ a3 2r oo oe *8 . o
[T e ., 2 : %
cEc [=)] % cl"i" c 2 8% ®
5220 o (o TRRAITRS, o8 o, ooen
opoL ] Py 3‘
S82 or of W el .
‘e * > °Fr .
.' ‘.. .'. ° ‘ ° ~. )
. ® . Argentina
-2 ‘0 :. . o .o ® England
» U o 28 Y
e Iran
o e
vveve 41 ® 0 N ¢ Spain
++++ -
_6 L L ' ' L L '}
-4 -2 0 2 4 8 1C
PCA1
+ « SLA
Leaf thickness > +
+ < Leaf area
Toughness > +
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Annuals vs. perennials:

Annuals generally increase with
grazing except in humid habitats
with a long history of grazing.

Diaz et al. 2007.
Global Change Biology
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Short vs. tall plants:

Short plants generally increase
with grazing except in dry
habitats with a short history of
grazing.



Stem morphology:

Tussock plants generally

decrease with grazing

whereas rosette plants

increase globally.
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Results of analyses of trait variation among four different floras show
that the same trade offs occur among putative functional types. Diaz et
al. concluded that grasses and legumes are not functionally all that
different because these groups show the same trait trade-offs.

Diaz et al. 2004 Journal of Vegetation Science



Craine et al. 2001
Functional Ecology
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Results from Craine et al. would
suggest just the opposite.
Legumes respond distinctly
differently than other broadly
based functional groups
(grasses, woody species,
forbs).
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Low diversity community:
Interspecific competition dominates
Neighbor interactions are consistent
Directional selection can occur
Character displacement is common
Result is trait divergence

High diversity community:
Diffuse competition dominates
Neighbor interactions are inconsistent
Directional selection is rare
Character displacement is uncommon
Result is trait convergence

Hubbell 2006 Ecology
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Frequency of genotypes or environmental states

0.8

Environmental state or metric trait

08

1.0

Evolution of trait convergence
through drift. This process requires
dispersal limitation.

Hubbell 2006 Ecology
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Relative species abundance (%)
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Neutral model and curve fitting:
- the metapopulation model
overestimates abundance of rare
species

- the neutral model fits the
distribution well (r2=0.996)

500 1000
Species rank abundance

Hubbell 2006 Ecology
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Collins et al. in review

Species abundance
distributions did not
differ in control vs. N
fertilized plots despite
considerable change
in species ordering
and a decrease in
species richness.
Therefore, curve-fitting
is a weak test of
neutral theory.
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Collins et al. in review

Significant changes occurred in two grass species with N fertilization.
The dominant perennial C4 bunchgrass, little bluestem, decreased over
time whereas the non-native annual C3 grass, western wheatgrass,
increased.
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Distribution of sampling points for understory vegetation
(individuals < 1.5 m tall) in an old growth forest in Canada.
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Analysis of distance decay, or similarity of species composition
with increasing distances between sample points. Model output
predicts pattern of distance decay (top). Empirical data shows no

pattern of distance decay, as would be expected from a neutral 18
model.



In all cases, environmental variables explained a

greater proportion of variance in species distribution

than did distance, implying strong niche-based
responses to species distributions.
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Feeding trials with three common species
show that feeding preferences are well
correlated with food plant distribution and
abundance. Thus, niche-based
differentiation is stronger than would be
expected under a neutral model.
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DISTURBANCE REGIME

Press factor — variable or driver that is applied continuously at rates ranging
from low to high (e.g., atmospheric nitrogen deposition, elevated CO2).
Includes changes in rates (increases, decreases) relative to some historical
baseline.

Pulse factor — variable or driver that is applied once or at periodic intervals
(e.g., fire, extreme climatic events). Includes changes in the size, magnitude
and frequency at which pulses occur.

Concept from Bender et al. 1984. Perturbation experiments in community ecology: Theory and practice. Ecology 65(1):1-13.
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System Response Trajectories

Press (e.g. N deposition)

Rapid community-level response
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Irrigation transects
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Vegetation was
sampled from 1991-
2002 in 31
permanently located
10-m? quadrats along
two irrigated and two
control transects




Precipitation
effects on
species
diversity
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Upland control:
r=0.55, P=0.10

18 ] [} [}
- Precipitation
Upland irrigated:

v, ¥ v ™062P=006 effects on
species
richness
over time
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Konza Prairie Long-term Irrigation Transect Study

 Treatments initiated in 1991

« Supplemental water added during the growing season to
replicate 140 m transects (paired with control transects)

» Designed to meet plant water demand and minimize
intra-annual variability in soil water deficits
29



Summary of the first eight years...

« Water availability limited
ANPP 6 out of 8 years

* Irrigation increased ANPP
by ~25% (physiological
response)

800

wi/v) dainNyv

700

600 -

500

400

300 - ‘ ‘ ‘
600 800 1000 1200 1400

Annual ppt + irrigation (mm)

900

800 r

700 -

600

500

400 -

300

0—o Control
e—e |rrigated

- 1200

- 800
- 600
- 400
- 200

aliln

1992 1994 1996 1998

Year

« Good fit between ANPP
and ppt amount and when
variability is removed and
range extended

30
Knapp et al. 2001 Ecosystems
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But then we continued the experiment...
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What would change the
relationship between ANPP
and precipitation?

May be related to species
changes (increased cover
of Panicum virgatum) —
Community response
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Fig. 6. 0 on the x-axis refers to the position of the sprinkler line.

Bars indicate water supplementation used in this experiment
(in mm water) and as % of control.
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Treatment effects on dominant grasses
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Simple model of resource augmentation
response (global change)
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